[1] |
WANG H L, CASALONGUE H S, LIANG Y Y, et al. Ni(OH)2 nanoplates grown on grapheme as advanced electrochemical pseudo capacitor materials[J]. J. Am. Chem. Soc., 2010, 132:7472-7477.
|
[2] |
WU Y P, MA J Q, DAI X B, et al. Lithium Ion Batteries:Practice Applications[M]. Beijing:Chemical Industry Press, 2004.
|
[3] |
李巧乐, 燕映霖, 杨蓉, 等. 锂硫电池用玉米苞叶基活性炭/硫复合正极材料的电化学性能[J]. 化工学报, 2017, 68(11):4376-4382. LI Q L, YAN Y L, YANG R, et al. Electrochemical performance of activated carbon derived from corn bracts/sulfur composite cathode material for lithium-sulfur batteries[J]. CIESC Journal, 2017, 68(11):4376-4382.
|
[4] |
SU L W, JING Y, ZHOU Z. Li ion battery materials with core-shell nanostructures[J]. Nanoscale, 2011, 3(10):3967-3983.
|
[5] |
张金龙, 佟微, 漆汉宏. 锂电池发展浅谈[J]. 电源技术, 2017, (9):1377-1379. ZHANG J L, TONG W, QI H H. Discussion of lithium battery development[J]. Power Technology, 2017, (9):1377-1379.
|
[6] |
PAIER J, ASAHI R, NAGOYA A, et al. Cu2ZnSnS4 as a potential photovoltaic material:a hybrid Hartree-Fock density functional theory study[J]. Physical Review B, 2009, 79(11):115126.
|
[7] |
宋刘斌, 唐福利, 肖忠良, 等. 含导电聚苯胺类锂离子电池复合材料的现状及发展趋势[J]. 化工学报, 2017, 68(7):2631-2640. SONG L B, TANG F L, XIAO Z L, et al. Current status and development trend of conductive polyaniline lithium-ion battery composites[J]. CIESC Journal, 2017, 68(7):2631-2640.
|
[8] |
LU W, YUAN D, ZHAO D, et al. Porous polymer networks:synthesis, porosity, and applications in gas storage/separation[J]. Chem. Mater., 2010, 22:5964-5972.
|
[9] |
YANG Q H, XU W H, TOMITA A, et al. The template synthesis of double coaxial carbon nanotubes with nitrogen-doped and boron-doped multiwalls[J]. J. Am. Chem. Soc., 2005, 127(25):8956-8957.
|
[10] |
WANG Y, ZOU H, ZENG S, et al. A one-step carbonization route towards nitrogen-doped porous carbon hollow spheres with ultrahigh nitrogen content for CO2 adsorption[J]. Chemi. Commun., 2015, 51(62):12423-12426.
|
[11] |
郑远远, 姚金环, 姜吉琼, 等. 纳米多孔NiO类空心微球负极材料的制备与储锂性能[J]. 化工学报, 2017, 68(6):2596-2603. ZHENG Y Y, YAO J H, JIANG J Q, et al. Preparation and lithium storage performance of nanoporous hollow microspheres-like NiO anode materials[J]. CIESC Journal, 2017, 68(6):2596-2603.
|
[12] |
ROBERTS A D, LI X, ZHANG H. Porous carbon spheres and monoliths:morphology control, pore size tuning and their applications as Li-ion battery anode materials[J]. Chem. Soc. Rev., 2014, 43(13):4341-4356.
|
[13] |
LEE H J, CHOI S, OH M. Well-dispersed hollow porous carbon spheres synthesized by direct pyrolysis of core-shell type metal-organic frameworks and their sorption properties[J]. Chemi. Commun., 2014, 50(34):4492-4495.
|
[14] |
HAN Y, DONG X, ZHANG C, et al. Hierarchical porous carbon hollow-spheres as a high performance electrical double-layer capacitor material[J]. J. Power Sources, 2012, 211:92-96.
|
[15] |
HOU J, CAO T, IDREES F, et al. A co-sol-emulsion-gel synthesis of tunable and uniform hollow carbon nanospheres with interconnected mesoporous shells[J]. Nanoscale, 2015, 8(1):451-457.
|
[16] |
吴启强, 包永忠. 偏氯乙烯共聚物/纳米水滑石复合材料及多孔炭的制备与表征[J]. 化工学报, 2011, 62(4):1130-1135. WU Q Q, BAO Y Z. Preparation and characterization of vinylidene chloride copolymer/nanometer hydrotalcite composites and porous carbons[J]. CIESC Journal, 2011, 62(4):1130-1135.
|
[17] |
HE X, SUN H J, ZHU M P, et al. N-doped porous graphitic carbon with multi-flaky shell hollow structure prepared using a green and ‘useful’ template of CaCO3 for VOC fast adsorption and small peptide enrichment[J]. Chemi. Commun., 2017, 53:3442-3445.
|
[18] |
贺鑫, 尹大伟, 赵祯霞, 等. 超重力场中影响碳酸钙晶须断裂的影响因素分析[J]. 高校化学工程学报, 2016, 30(6):1359-1365. HE X, YIN D W, ZHAO Z X, et al. Influencing factors on the fracture of calcium carbonate whiskers in hypergravity field[J]. Journal of Chemical Engineering of Chinese Universities, 2016, 30(6):1359-1365.
|
[19] |
NEIMARK A V, SIN K S W, THOMMES M. Surface Area and Porosity[M]. Weinheim:Wiley-VCH Verlag GmbH & Co. KGaA, 2008.
|
[20] |
STEPHANIE L C, EVAN U. Comparison of effect of nitrogen and surface modification of porous carbon on the performance of Supercapacitors[J]. Sci. China Mater., 2015, 58(7):521-533.
|
[21] |
FAN S S, ZHONG H, YU H T, et al. Hollow and hierarchical Na2Li2Ti6O14 microspheres with high electrochemical performance as anode material for lithium-ion battery[J]. Sci. China Mater., 2017, 60(5):427-437.
|
[22] |
WU Y P, WAN C R, JIANG C Y, et al. Mechanism of lithium storage in low temperature carbon[J]. Carbon, 1999, 37:1901-1908.
|
[23] |
GAN L, GUO H J, WANG Z X, et al. A facile synthesis of graphite/silicon/graphene spherical composite anode for lithium-ion batteries[J]. Electrochim. Acta, 2013, 104(8):117-123.
|
[24] |
CHANG Y C, SOHN H J. Electrochemical impedance analysis for lithium ion intercalation into graphitized carbons[J]. J. Electrochem. Soc., 2000, 147:50-58.
|
[25] |
XING Z, JU Z C, ZHAO Y L, et al. One——pot hydrothermal synthesis of nitrogen-doped graphene as high-performance anode materials for lithium ion batteries[J]. Sci. Res., 2016, 6:26146.
|
[26] |
王力臻, 蔡洪波, 古书华, 等. 直流刻蚀铝集流体对LiC0O2正极性能的影响[J]. 电池, 2008, 38(5):3-5. WANG L Z, CAI H B, GU S H, et al. Effect of DC etching aluminums current collector on performance of LiC0O2 positive electrode[J]. Battery Bimonthly, 2008, 38(5):3-5.
|
[27] |
TATSUYA N, SHINGO O, NORIKO Y, et a1. Electrochemical performance of cathodes prepared on current collector with different surface morphologies[J]. J. Power Sources, 2013, 244:532-537.
|
[28] |
TANG J, YANG J, ZHOU X Y, Synthesis and characterisation of sponge-like carbon anode materials for lithium ion batteries[J]. Mater. Lett., 2013, 109(15):253-256.
|
[29] |
SAIKIA D, WANG T H, CHOU C J, et al. A comparative study of ordered mesoporous carbons with different pore structures as anode materials for lithium-ion batteries[J]. RSC Advances, 2015, 5(53):42922-42930.
|
[30] |
尤春琴, 罗民, 阚夏梅, 等. 皱褶表面介孔镍钴硫化物微球的制备及其超电性能[J]. 应用化学. 2015, 32(12):1455-1461. YOU C Q, LUO M, KAN X M, et al. One-step hydrothermal synthesis of mesoporous ruffle-like sulfide microspheres for supercapacitors[J]. Chin. J. Chem. Eng., 2015, 32(12):1455-1461.
|