[1] |
MONTENEGRO V, SANO H, FUJISAWA T. Recirculation of high arsenic content copper smelting dust to smelting and converting processes[J]. Minerals Engineering, 2013, 49(8):184-189.
|
[2] |
SÁNCHEZ D L C A, SÁNCHEZ-RODAS D, GONZÁLEZ C, et al. Geochemical anomalies of toxic elements and arsenic speciation in airborne particles from Cu mining and smelting activities:influence on air quality[J]. Journal of Hazardous Materials, 2015, 291(1):18-27.
|
[3] |
MANDAL B K, SUZUKI K T. Arsenic round the world:a review[J]. Talanta, 2002, 58(1):201-235.
|
[4] |
刘海浪, 和森, 宋向荣, 等. 铜冶炼高砷烟尘浸出特性研究[J]. 安全与环境学报, 2017, 17(3):1124-1128. LIU H L, HE S, SONG X R, et al. On the leaching ability of high arsenic smoke-dust from the copper smelting processing[J]. Journal of Safety and Environment, 2017, 17(3):1124-1128.
|
[5] |
GUO X, SHI J, YI Y, et al. Separation and recovery of arsenic from arsenic-bearing dust[J]. Journal of Environmental Chemical Engineering, 2015, 3(3):2236-2242.
|
[6] |
TONGAMP W, TAKASAKI Y, SHIBAYAMA A. Selective leaching of arsenic from enargite in Na2S-NaOH media[J]. Hydrometallurgy, 2010, 101(1):64-68.
|
[7] |
LI Y, LIU Z, LI Q, et al. Alkaline oxidative pressure leaching of arsenic and antimony bearing dusts[J]. Hydrometallurgy, 2016, 166(1):41-47.
|
[8] |
RUIZ M C, GRANDON L, PADILLA R. Selective arsenic removal from enargite by alkaline digestion and water leaching[J]. Hydrometallurgy, 2014, 150(1):20-26.
|
[9] |
LEWIS A E. Review of metal sulphide precipitation[J]. Hydrometallurgy, 2010, 104(2):222-234.
|
[10] |
丁松君, 林宝启, 王业光. 高砷铜矿硫化钠-氢氧化钠浸出脱砷研究[J]. 有色金属(冶炼部分), 1983, (4):26-29. DING S J, LIN B Q, WANG Y G. The study of high arsenic in copper ore by Na2S-NaOH leaching[J]. Nonferrous Metals(Extractive Metallurgy), 1983, (4):26-29.
|
[11] |
吴玉林, 徐志峰, 郝士涛. 炼铜烟灰碱浸脱砷的热力学及动力学[J]. 有色金属(冶炼部分), 2013, (4):3-7. WU Y L, XU Z F, HAO S T. Thermodynamics and kinetics of alkaline leaching of arsenic in copper smelting dust[J]. Nonferrous Metals (Extractive Metallurgy), 2013, (4):3-7.
|
[12] |
ZHANG R L, ZHANG X F, TANG S Z, et al. Ultrasound-assisted HCl-NaCl leaching of lead-rich and antimony-rich oxidizing slag[J]. Ultrasonics Sonochemistry, 2015, 27:187-191.
|
[13] |
ONCEL M S, INCE M, BAYRAMOGLU M. Leaching of silver from solid waste using ultrasound assisted thiourea method[J]. Ultrasonics Sonochemistry, 2005, 12(3):237-42.
|
[14] |
AL-MEREY R, AL-MASRI M S, BOZOU R. Cold ultrasonic acid extraction of copper, lead and zinc from soil samples[J]. Analytica Chimica Acta, 2002, 452(1):143-148.
|
[15] |
袁明亮, 赵国魂, 邱冠周. 砷金矿与锰银矿同时浸出中的超声强化作用[J]. 过程工程学报, 2003, 3(5):409-412. YUAN M L, ZHAO G H, QIU G Z. Effect of ultrasonic wave on simultaneous leaching of Mn-containing silver ore and As-containing gold ore[J]. The Chinese Journal of Process Engineering, 2003, 3(5):409-412.
|
[16] |
NEPPOLIAN B, PARK J S, CHOI H. Effect of Fenton-like oxidation on enhanced oxidative degradation of chlorobenzoic acid by ultrasonic irradiation[J]. Ultrasonics Sonochemistry, 2004, 11(5):273-279.
|
[17] |
YIN S, PEI J, JIANG F, et al. Ultrasound-assisted leaching of rare earths from the weathered crust elution-deposited ore using magnesium sulfate without ammonia-nitrogen pollution[J]. Ultrasonics Sonochemistry, 2018, 41:156-162.
|
[18] |
李娜, 孙竹梅, 阮福辉, 等. 三氯化铁除砷(Ⅲ)机理[J]. 化工学报, 2012, 63(7):2224-2228. LI N, SUN Z M, RUAN F H, et al. Mechanism of removing arsenic(Ⅲ) with ferric chloride[J]. CIESC Journal, 2012, 63(7):2224-2228.
|
[19] |
DENG B Q, LIN Y J. Distribution and hazard prevention of lead and arsenic in copper smelting process[J]. World Nonferrous Metals, 2017, 12(2):12-13.
|
[20] |
YANG T Z, FU X X, LIU W F, et al. Hydrometallurgical treatment of copper smelting dust by oxidation leaching and fractional precipitation technology[J]. The Journal of the Minerals, Metals & Materials Society, 2017, 69(10):1982-1986.
|
[21] |
王倩, 郭莉, 陈绍华, 等. 辉光放电等离子体辅助碱浸铜冶炼烟灰中铜砷分离[J]. 化工学报, 2017, 68(5):1932-1939. WANG Q, GUO L, CHEN S H, et al. Separation of copper and arsenic in copper smelting dust by Na2S-NaOH leaching assisted with glow discharge plasma[J]. CIESC Journal, 2017, 68(5):1932-1939.
|
[22] |
国家环境保护总局. 固体废物浸出毒性浸出方法硫酸硝酸法:HJ/T 299-2007[S]. 北京:中国标准出版社, 2007. General Environmental Protection Administration. Solid waste-extraction procedure for leaching toxicity-sulfuric acid & nitric acid method:HJ/T 299-2007[S]. Beijing:Standards Press of China, 2007.
|
[23] |
国家环境保护总局. 固体废物浸出毒性浸出方法醋酸缓冲溶液法:HJ/T 300-2007[S]. 北京:中国标准出版社, 2007. General Environmental Protection Administration. Solid waste-extraction procedure for leaching toxicity-acetic acid buffer solution method:HJ/T 300-2007[S]. Beijing:Standards Press of China, 2007.
|
[24] |
国家环境保护总局. 固体废物浸出毒性浸出方法翻转法:GB 5086.1-1997[S]. 北京:中国标准出版社, 2007. General Environmental Protection Administration. Test method standard for leaching toxicity of solid wastes-roll over leaching procedure:GB 5086.1-1997[S]. Beijing:Standards Press of China, 1997.
|
[25] |
国家质量监督检验检疫总局, 国家标准化管理委员会. 固体废物砷的测定二乙基二硫代氨基甲酸银分光光度法:GB/T 15555.3-1995[S]. 北京:中国标准出版社, 1996. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Solid waste-determination of arsenic-silver diethyl dithiocarbamate spectrophotometric method:GB/T 15555.3-1995[S]. Beijing:Standards Press of China, 1996.
|
[26] |
国家环保总局. 水质65种元素的测定电感耦合等离子体质谱法:HJ 700-2014[S]. 北京:中国环境出版社, 2014. Chinese Environment Protection Bureau. Water quality-determination of 65 elements-inductively coupled plasma-mass spectrometry:HJ 700-2014[S]. Beijing:China Environmental Science Press, 2014.
|
[27] |
国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社, 2002:133-136, 210-213, 246-248. Chinese Environment Protection Bureau. Inspects and Analysis Methods of Water and Wastewater[M]. 4th ed. Beijing:China Environmental Science Press, 2002:133-136, 210-213, 246-248.
|
[28] |
CHEN W F, QU Y, XU Z H, et al. Heavy metal (Cu, Cd, Pb, Cr) washing from river sediment using biosurfactant rhamnolipid[J]. Environmental Science and Pollution Research, 2017, 24(19):16344-16350.
|
[30] |
易宇, 石靖, 田庆华, 等. 高砷烟尘氢氧化钠-硫化钠碱性浸出脱砷[J]. 中国有色金属学报, 2015, 25(3):806-814. YI Y, SHI J, TIAN Q H, et al. Arsenic removal from high-arsenic dust by NaOH-Na2S alkaline leaching[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(3):806-814.
|
|
国家环境保护总局. 危险废物鉴别标准通则:GB 5085.7-2007[S]. 北京:中国标准出版社, 2007. General Environmental Protection Administration. Identification standards for hazardous wastes-general specifications:GB 5085.7-2007[S]. Beijing:Standards Press of China, 2007.
|
[31] |
XIE F C, LI H Y, MA Y, et al. The ultrasonically assisted metals recovery treatment of printed circuit board waste sludge by leaching separation[J]. Journal of Hazardous Materials, 2009, 170(1):430-435.
|
[32] |
AYTÜL H, VURAL G. Investigation and kinetic evaluation of the reactions of hydroxymethylfural with amino and thiol groups of amino acids[J]. Food Chemistry, 2018, 240(1):354-360.
|
[33] |
DOULAH M S. Mechanism of disintegration of biological cells in ultrasonic cavitation[J]. Biotechnology & Bioengineering, 2010, 19(5):649-660.
|
[34] |
ESKIN G I. Cavitation mechanism of ultrasonic melt degassing[J]. Ultrasonics Sonochemistry, 1995, 2(2):S137-S141.
|
[35] |
YUAN J, XIAO J, LI F C, et al. Co-treatment of spent cathode carbon in caustic and acid leaching process under ultrasonic assisted for preparation of SiC[J]. Ultrasonic Sonochemistry, 2018, 41:608-618.
|
[36] |
ZHAO Q, LIU C J, SHI P Y, et al. Sulfuric acid leaching kinetics of South African chromite[J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(3):233-240.
|
[37] |
KANG D C, ZOU Y H, CHENG Y P, et al. Effects of power ultrasound on oxidation and structure of beef proteins during curing processing[J]. Ultrasonics Sonochemistry, 2016, 33(1):47-53.
|
[38] |
LI H, ZHANG K, ZHANG X, et al. Contributions of ultrasonic wave, metal ions, and oxidation on the depolymerization of cellulose and its kinetics[J]. Renewable Energy, 2018, 126(1):699-707.
|
[39] |
FU L K, ZHANG L B, WANG S X, et al. Synergistic extraction of gold from the refractory gold ore via ultrasound and chlorination-oxidation[J]. Ultrasonics Sonochemistry, 2017, 37(1):471-477.
|