[1] |
CAREY V P, CHEN G, GRIGOROPOULOS C, et al. A review of heat transfer physics[J]. Nanoscale and Microscale Thermophysical Engineering, 2008, 12(1):1-60.
|
[2] |
牛小飞, 李志学, 徐永明. 强化传热技术及其应用[J]. 广州化工, 2009, 37(9):43-51. NIU X F, LI Z X, XU Y M. Enhanced heat transfer technology and its applications[J]. Guangzhou Chemical Industry, 2009, 37(9):43-51.
|
[3] |
李洪亮. 强化传热技术及其应用[J]. 化工设备与防腐蚀, 2002, 5(2):111-113. LI H L. Enhanced heat transfer technology and its applications[J]. Chemical Equipment and Anticorrosion, 2002, 5(2):111-113.
|
[4] |
XUAN Y, ROETZEL W. Conceptions for heat transfer correlation of nanofluids[J]. International Journal of Heat and Mass Transfer, 2000, 43(19):3701-3707.
|
[5] |
JANG S P, CHOI S U S. Role of Brownian motion in the enhanced thermal conductivity of nanofluids[J]. Applied Physics Letters, 2004, 84(21):4316-4318.
|
[6] |
WU J M, ZHAO J. A review of nanofluid heat transfer and critical heat flux enhancement-research gap to engineering application[J]. Progress in Nuclear Energy, 2013, 66(5):13-24.
|
[7] |
VAFAEI S. Nanofluid pool boiling heat transfer phenomenon[J]. Powder Technology, 2015, 277:181-192.
|
[8] |
CHOI S U S, EASTAMAN J A. Enhancing thermal conductivity of fluids with nanoparticles[J]. Asme. Fed., 1995, 231(1):99-105.
|
[9] |
KIM S J, BANG I C, BUONGIORNO J, et al. Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux[J]. International Journal of Heat and Mass Transfer, 2007, 50(19/20):4105-4116.
|
[10] |
KWARK S M, KUMAR R, MORENO G, et al. Pool boiling characteristics of low concentration nanofluids[J]. International Journal of Heat and Mass Transfer, 2010, 53(5):972-981.
|
[11] |
SEFIANE K. On the role of structural disjoining pressure and contact line pinning in critical heat flux enhancement during boiling of nanofluids[J]. Applied Physics Letters, 2006, 89(4):044106.
|
[12] |
DEEGAN R D, BAKAJIN O, DUPONT T F, et al. Capillary flow as the cause of ring stains from dried liquid drops[J]. Nature, 1997, 389(6653):827-829.
|
[13] |
YUNKER P J, STILL T, LOHR M A, et al. Suppression of the coffee-ring effect by shape-dependent capillary interactions[J]. Nature, 2011, 476(7360):308-311.
|
[14] |
CRIVOI A, DUAN F. Effect of surfactant on the drying patterns of graphite nanofluid droplets[J]. Journal of Physical Chemistry B, 2013, 117(19):5932-5938.
|
[15] |
CRIVOI A, DUAN F. Elimination of the coffee-ring effect by promoting particle adsorption and long-range interaction[J]. Langmuir, 2013, 29(39):12067.
|
[16] |
ZHANG Y J, LIU Z T, ZANG D Y, et al. Pattern transition and sluggish cracking of colloidal droplet deposition with polymer additives[J]. Science China(Physics, Mechanics & Astronomy), 2013, 56(9):1712-1718.
|
[17] |
DAS S K, PUTRA N, ROETZEL W. Pool boiling characteristics of nano-fluids[J]. International Journal of Heat and Mass Transfer, 2003, 46(5):851-862.
|
[18] |
NARAYAN G P, ANOOP K B, DAS S K. Mechanism of enhancement/deterioration of boiling heat transfer using stable nanoparticle suspensions over vertical tubes[J]. Journal of Applied Physics, 2007, 102(7):074317.
|
[19] |
TRUONG B, HU L W, BUONGIORNO J, et al. Modification of sandblasted plate heaters using nanofluids to enhance pool boiling critical heat flux[J]. International Journal of Heat and Mass Transfer, 2010, 53(1/2/3):85-94.
|
[20] |
JONES B J, MCHALE J P, GARIMELLA S V. The Influence of surface roughness on nucleate pool boiling heat transfer[J]. Journal of Heat Transfer, 2009, 131(12):121009.
|
[21] |
MOURGUES A, HOURTANE V, MULLER T, et al. Boiling behaviors and critical heat flux on a horizontal and vertical plate in saturated pool boiling with and without ZnO nanofluid[J]. International Journal of Heat and Mass Transfer, 2013, 57(2):595-607.
|
[22] |
YANG X F, LIU Z H. Pool boiling heat transfer of functionalized nanofluid under sub-atmospheric pressures[J]. International Journal of Thermal Sciences, 2011, 50(12):2402-2412.
|
[23] |
STOBER W, FINK A, BOHN E. Controlled growth of monodisperse silica spheres in the micron size range[J]. Journal of Colloid and Interface Science, 1968, 26(1):62-69.
|
[24] |
张永建. 胶体液滴的蒸发及其自组装图案调控机制研究[D]. 西安:西北工业大学, 2015. ZHANG Y J. Tuning of self-assembly patterns induced by the evaporation of colloidal droplets[D]. Xi'an:Northwestern Polytechnical University, 2015.
|
[25] |
WASAN D T, NIKOLOV A D. Spreading of nanofluids on solids[J]. Nature, 2003, 423(6936):156-159.
|
[26] |
CHENGARA A, NIKOLOV A D, WASAN D T, et al. Spreading of nanofluids driven by the structural disjoining pressure gradient[J]. Journal of Colloid and Interface Science, 2004, 280(1):192-201.
|
[27] |
WEN D. Mechanisms of thermal nanofluids on enhanced critical heat flux (CHF)[J]. International Journal of Heat and Mass Transfer, 2008, 51(19):4958-4965.
|
[28] |
XU L, XU J. Nanofluid stabilizes and enhances convective boiling heat transfer in a single microchannel[J]. International Journal of Heat and Mass Transfer, 2012, 55(21/22):5673-5686.
|
[29] |
KRALCHEVSKY P A, NAGAYAMA K. Capillary forces between colloidal particles[J]. Langmuir, 1994, 10(1):23-36.
|
[30] |
KRALCHEVSKY P A, DENKOV N D. Capillary forces and structuring in layers of colloid particles[J]. Current Opinion in Colloid and Interface Science, 2001, 6(4):383-401.
|