CIESC Journal ›› 2018, Vol. 69 ›› Issue (12): 4931-4946.DOI: 10.11949/j.issn.0438-1157.20180436
Previous Articles Next Articles
SHI Xiaofei, YANG Siyu, QIAN Yu
Received:
2018-04-24
Revised:
2018-08-10
Online:
2018-12-05
Published:
2018-12-05
Supported by:
supported by the National Natural Science Foundation of China(21736004).
史晓斐, 杨思宇, 钱宇
通讯作者:
钱宇
基金资助:
国家自然科学基金重点项目(21736004)。
CLC Number:
SHI Xiaofei, YANG Siyu, QIAN Yu. Chemical looping technology for clean and highly efficient coal processes[J]. CIESC Journal, 2018, 69(12): 4931-4946.
史晓斐, 杨思宇, 钱宇. 化学链技术在煤炭清洁高效利用中的研究进展[J]. 化工学报, 2018, 69(12): 4931-4946.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20180436
[1] | ZHAO X, CAI Q, MA C, et al. Economic evaluation of environmental externalities in China's coal-fired power generation[J]. Energy Policy, 2017, 102:307-317. |
[2] | GOTO K, YOGO K, HIGASHⅡ T. A review of efficiency penalty in a coal-fired power plant with post-combustion CO2 capture[J]. Applied Energy, 2013, 111(11):710-720. |
[3] | 迟金玲, 张士杰, 王波, 等. CO2捕集对输运床气化炉IGCC系统技术经济性的影响[J]. 中国电机工程学报, 2013, 33(23):51-59. CHI J L, ZHANG S J, WANG B, et al. Influences of CO2 capture on techno-economic performance of transport gasifier based IGCC systems[J]. Proceedings of the CSEE, 2013, 33(23):51-59. |
[4] | 黄格省, 李振宇, 王建明. 我国现代煤化工产业发展现状及对化工产业的影响[J]. 化工进展, 2015, 34(2):295-302. HUANG G S, LI Z Y, WANG J M. Development status of coal chemical industry in China and its influence on petrochemical industry[J]. Chemical Industry and Engineering Progress, 2015, 34(2):295-302. |
[5] | 张媛媛, 王永刚, 田亚峻. 典型现代煤化工过程的二氧化碳排放[J]. 化工进展, 2016, 35(12):4060-4064. ZHANG Y Y, WANG Y G, TIAN Y J. Comparative studies on carbon dioxide emissions of typical modern coal chemical processes[J]. Chemical Industry and Engineering Progress, 2016, 35(12):4060-4064. |
[6] | 黄宏, 杨思宇. 一种低能耗捕集CO2煤基甲醇和电力联产过程设计[J]. 化工学报, 2017, 68(10):3860-3869. HUANG H, YANG S Y. Design of a coal based methanol and power polygeneration process with low energy consumption for CO2 capture[J]. CIESC Journal, 2017, 68(10):3860-3869. |
[7] | LI G, YANG J, CHEN D, et al. Impacts of the coming emission trading scheme on China's coal-to-materials industry in 2020[J]. Applied Energy, 2017, 195:837-849. |
[8] | LANE H. Process for the production of hydrogen:US1078686[P]. 1913-12-18. |
[9] | LEWIS W, GILLILAND E. Production of pure carbon dioxide:US2665972[P]. 1954-01-12. |
[10] | GILLILAND E. Production of industrial gas comprising carbon monoxide and hydrogen:US2671721[P]. 1946-08-03. |
[11] | RICHTER H, KNOCHE K. Reversibility of combustion processes, efficiency and costing. Second law analysis of processes[J]. ACS Symposium Series, 1983, 235:71-85. |
[12] | ISHIDA M, ZHENG D, AKEHATA T. Evaluation of a chemical-looping-combustion power-generation system by graphic exergy analysis[J]. Energy, 1987, 12(2):147-154. |
[13] | ZHAO X, ZHOU H, SIKARWAR V S, et al. Biomass-based chemical looping technologies:the good, the bad and the future[J]. Energy & Environmental Science, 2017, 10(9):1885-1910. |
[14] | SHIJAZ H, ATTADA Y, SURESH V, et al. Analysis of integrated gasification combined cycle power plant incorporating chemical looping combustion for environment-friendly utilization of Indian coal[J]. Energy Conversion & Management, 2017, 151(2017):414-425. |
[15] | ISHIDA M, JIN H. A new advanced power-generation system using chemical-looping combustion[J]. Energy, 1994, 19(4):415-422. |
[16] | JIN H, ISHIDA M. A novel gas turbine cycle with hydrogen-fueled chemical-looping combustion[J]. International Journal of Hydrogen Energy, 2000, 25(12):1209-1215. |
[17] | 洪慧, 金红光, 杨思. 低温太阳热能与化学链燃烧相结合控制CO2分离动力系统[J]. 工程热物理学报, 2006, 27(5):729-732. HONG H, JIN H G, YANG S. A power generation system with inherent CO2 recovery combining chemical-looping combustion with low-temperature solar thermal energy[J]. Journal of Engineering Thermophysics, 2006, 27(5):729-732. |
[18] | HONG H, ZHANG H, HAN T, et al. Experimental analyses on feasibility of chemical-looping CoO/CoAl2O4 with additive for solar thermal fuel production[J]. Energy Technology, 2017, 5(9):1536-1545. |
[19] | FAN J, JIN H, HONG H, et al. Thermodynamic and environmental evaluation of biomass and coal co-fuelled gasification chemical looping combustion with CO2 capture for combined cooling, heating and power production[J]. Applied Energy, 2017, 195:861-876. |
[20] | ZHANG X, LI S, JIN H. A polygeneration system based on multi-input chemical looping combustion[J]. Energies, 2014, 7(11):7166-7177. |
[21] | ZHANG X, HAN W, HONG H, et al. A chemical intercooling gas turbine cycle with chemical-looping combustion[J]. Energy, 2009, 34(12):2131-2136. |
[22] | FAN J, HONG H, JIN H. Improvement of "near-term" fluidized bed chemical looping combustion for power generation[J]. Energy Procedia, 2017, 114:317-324. |
[23] | 向文国, 狄腾腾, 肖军, 等. 新型煤气化间接燃烧联合循环研究[J]. 中国电机工程学报, 2004, 24(8):170-174. XIANG W G, DI T T, XIAO J, et al. Investigation of a novel gasification chemical looping combustion combined cycle[J]. Proceedings of the CSEE, 2004, 24(8):170-174. |
[24] | 金红光, 张希良, 高林, 等. 控制CO2排放的能源科技战略综合研究[J]. 中国科学E辑:技术科学, 2008, 38(9):1495-1506. JIN H G, ZHANG X L, GAO L, et al. Comprehensive study on energy technology strategy to control CO2 emission[J]. Science in China Series E-Technological Science, 2008, 38(9):1495-1506. |
[25] | JIN H, ISHIDA M. Graphical exergy analysis of complex cycles[J]. Energy, 1993, 18(6):615-625. |
[26] | 金红光, 洪慧, 王宝群, 等. 化学能与物理能综合梯级利用原理[J]. 中国科学E辑:技术科学, 2005, 35(3):299-313. JIN H G, HONG H, WANG B Q, et al. The principle of using chemical and physical energy synthetically[J]. Science in China Series E-Technological Science, 2005, 35(3):299-313. |
[27] | LIU Y, GUO Q. Investigation into syngas generation from solid fuel using CaSO4-based chemical looping gasification process[J]. Chinese Journal of Chemical Engineering, 2013, 21(2):127-134. |
[28] | LIU Y, GUO Q, CHENG Y, et al. Reaction mechanism of coal chemical looping process for syngas production with CaSO4 oxygen carrier in the CO2 atmosphere[J]. Industrial & Engineering Chemistry Research, 2012, 51(31):10364-10373. |
[29] | NIU P, MA Y, TIAN X, et al. Chemical looping gasification of biomass (Ⅰ):Screening Cu-Fe metal oxides as oxygen carrier and optimizing experimental conditions[J]. Biomass & Bioenergy, 2018, 108:146-156. |
[30] | SHAHBAZ M, YUSUP S, INAYAT A, et al. Syngas production from steam gasification of palm kernel shell with subsequent CO2 capturing using CaO sorbent:an Aspen Plus modelling[J]. Energy & Fuels, 2017, 31(11):12350-12357. |
[31] | YANG J, MA L, DONG S, et al. Theoretical and experimental demonstration of lignite chemical looping gasification of phosphogypsum oxygen carrier for syngas generation[J]. Fuel, 2017, 194:448-459. |
[32] | ZHU L, ZHANG L, FAN J, et al. MSW to synthetic natural gas:system modeling and thermodynamics assessment[J]. Waste Management, 2016, 48(3):257-264. |
[33] | ZENG J, XIAO R, ZHANG H, et al. Chemical looping pyrolysis-gasification of biomass for high H2/CO syngas production[J]. Fuel Processing Technology, 2017, 168:116-122. |
[34] | 张云鹏, 刘永卓, 杨勤勤, 等. 废弃咖啡渣化学链气化反应特性[J]. 化工学报, 2016, 67(4):1303-1312. ZHANG Y P, LIU Y Z, YANG Q Q, et al. Reaction characteristics of chemical-looping gasification for waste coffee grounds[J]. CIESC Journal, 2016, 67(4):1303-1312. |
[35] | 王博, 刘永卓, 王东营, 等. 废弃活性炭化学链气化制富氢合成气[J]. 化工学报, 2017, 68(9):3541-3550. WANG B, LIU Y Z, WANG D Y, et al. Chemical looping gasification of waste activated carbon for hydrogen-enriched syngas production[J]. CIESC Journal, 2017, 68(9):3541-3550. |
[36] | LIU Y, JIA W, GUO Q, et al. Effect of gasifying medium on the coal chemical looping gasification with CaSO4 as oxygen carrier[J]. Chinese Journal of Chemical Engineering, 2014, 22(11/12):1208-1214. |
[37] | YANG J, MA L, DONG S, et al. Theoretical and experimental demonstration of lignite chemical looping gasification of phosphogypsum oxygen carrier for syngas generation[J]. Fuel, 2017, 194:448-459. |
[38] | HE F, GALINSKY N, LI F. Chemical looping gasification of solid fuels using bimetallic oxygen carrier particles-feasibility assessment and process simulations[J]. International Journal of Hydrogen Energy, 2013, 38(19):7839-7854. |
[39] | GE H, SHEN L, FEI F, et al. Experiments on biomass gasification using chemical looping with nickel-based oxygen carrier in a 25 kWth reactor[J]. Applied Thermal Engineering, 2015, 85:52-60. |
[40] | WEI G, HE F, ZHAO Z, et al. Performance of Fe-Ni bimetallic oxygen carriers for chemical looping gasification of biomass in a 10 kWth, interconnected circulating fluidized bed reactor[J]. International Journal of Hydrogen Energy, 2015, 40(46):16021-16032. |
[41] | MATTISSON T, LYNGFELT A, LEION H. Chemical-looping with oxygen uncoupling for combustion of solid fuels[J]. International Journal of Greenhouse Gas Control, 2009, 3(1):11-19. |
[42] | THON A, KRAMP M, HARTGE E U, et al. Operational experience with a system of coupled fluidized beds for chemical looping combustion of solid fuels using ilmenite as oxygen carrier[J]. Applied Energy, 2014, 118(1):309-317. |
[43] | ADANEZ J, GAYAN P, CELAYA J, et al. Chemical looping combustion in a 10 kWth prototype using a CuO/Al2O3 oxygen carrier:effect operating condition on methane combustion[J]. Industrial & Engineering Chemistry Research, 2006, 45(17):6075-6080. |
[44] | TONG A, BAYHAM S, KATHE M V, et al. Iron-based syngas chemical looping process and coal-direct chemical looping process development at Ohio State University[J]. Applied Energy, 2014, 113(1):1836-1845. |
[45] | 顾海明, 吴家桦, 郝建刚, 等. 基于赤铁矿载氧体的串行流化床煤化学链燃烧试验[J]. 中国电机工程学报, 2010, 30(17):51-56. GU H M, WU J H, HAO J G, et al. Experiment on chemical looping combustion of coal in interconnected fluidized bed using hematite as oxygen carrier[J]. Proceedings of the CSEE, 2010, 30(17):51-56. |
[46] | BAO J, LI Z, SUN H, et al. Continuous test of ilmenite-based oxygen carriers for chemical looping combustion in a dual fluidized bed reactor system[J]. Industrial & Engineering Chemistry Research, 2013, 52(42):14817-14827. |
[47] | WANG J, FAN W, LI Y, et al. The effect of air staged combustion on NOx emissions in dried lignite combustion[J]. Energy, 2012, 37(1):725-736. |
[48] | LI J, YANG W, BLASIAK W, et al. Volumetric combustion of biomass for CO2, and NOx reduction in coal-fired boilers[J]. Fuel, 2012, 102(6):624-633. |
[49] | ZHENG M, SHEN L, FENG X. In situ gasification chemical looping combustion of a coal using the binary oxygen carrier natural anhydrite ore and natural iron ore[J]. Energy Conversion and Management, 2014, 83(4):270-283. |
[50] | GE H, SHEN L, FEI F, et al. Experiments on biomass gasification using chemical looping with nickel-based oxygen carrier in a 25 kWth reactor[J]. Applied Thermal Engineering, 2015, 85:52-60. |
[51] | SHEN L, MIN Z, XIAO J, et al. A mechanistic investigation of a calcium-based oxygen carrier for chemical looping combustion[J]. Combustion and Flame, 2008, 154(3):489-506. |
[52] | GU H, SHEN L, ZHONG Z, et al. Cement/CaO-modified iron ore as oxygen carrier for chemical looping combustion of coal[J]. Applied Energy, 2015, 157(4):314-322. |
[53] | NIU X, SHEN L H, JIANG S X, et al. Combustion performance of sewage sludge in chemical looping combustion with bimetallic Cu-Fe oxygen carrier[J]. Chemical Engineering Journal, 2016, 294:185-192. |
[54] | GU H, SHEN L, XIAO J, et al. Iron ore as oxygen carrier improved with potassium for chemical looping combustion of anthracite coal[J]. Combustion and Flame, 2012, 159(7):2480-2490. |
[55] | SONG T, SHEN L, XIAO J, et al. Nitrogen transfer of fuel-N in chemical looping combustion[J]. Combustion and Flame, 2012, 159(3):1286-1295. |
[56] | CHENG C, POTTIMURTHY Y, XU M, et al. Fate of sulfur in coal-direct chemical looping systems[J]. Applied Energy, 2017, 208:678-690. |
[57] | FAN L, LI F, RAMKUMAR S. Utilization of chemical looping strategy in coal gasification processes[J]. Particuology, 2008, 6(3):131-142. |
[58] | WANG J, ZHAO H. Chemical looping dechlorination through adsorbent-decorated Fe2O3/Al2O3, oxygen carriers[J]. Combustion & Flame, 2015, 162(10):3503-3515. |
[59] | ALONSO M, RODRÍGUEZ N, GONZÁLEZ B, et al. Carbon dioxide capture from combustion flue gases with a calcium oxide chemical loop. Experimental results and process development[J]. International Journal of Greenhouse Gas Control, 2010, 4(2):167-173. |
[60] | 赵亚仙, 向文国, 陈时熠. 化学链高温空分制氧性能评价[J]. 东南大学学报(自然科学版), 2013, 43(4):809-813. ZHAO Y X, XIANG W G, CHEN S Y. Performance evaluation of chemical looping air separation/oxygen production at high temperatures[J]. Journal of Southeast University (Natural Science Edition), 2013, 43(4):809-813. |
[61] | MOGHTADERI B. Application of chemical looping concept for air separation at high temperatures[J]. Energy & Fuels, 2013, 24(1):190-198. |
[62] | CLOETE S, GIUFFRIDA A, ROMANO M, et al. Integration of chemical looping oxygen production and chemical looping combustion in integrated gasification combined cycles[J]. Fuel, 2018, 220:725-743. |
[63] | SHAH K, MOGHTADERI B, ZANGANEH J, et al. Integration options for novel chemical looping air separation (ICLAS) process for oxygen production in oxy-fuel coal fired power plants[J]. Fuel, 2013, 107(9):356-370. |
[64] | 黄斌, 许世森, 郜时旺, 等. 燃煤电厂CO2捕集系统的技术与经济分析[J]. 动力工程学报, 2009, 29(9):864-867. HUANG B, XU S S, GAO S W, et al. Techno-economic analysis on a CO2 capture system for coal-fired power plants[J]. Journal of Power Engineering, 2009, 29(9):864-867. |
[65] | SHARMA I, HOADLEY A F A, MAHAJANI S M, et al. Multi-objective optimisation of a RectisolTM process for carbon capture[J]. Journal of Cleaner Production, 2016, 119:196-206. |
[66] | LIU X, YANG S, HU Z, et al. Simulation and assessment of an integrated acid gas removal process with higher CO2 capture rate[J]. Computers & Chemical Engineering, 2015, 83:48-57. |
[67] | 向文国, 陈盈盈. 铁法链式反应器煤基氢电联产系统性能模拟[J]. 中国电机工程学报, 2007, 27(23):45-49. XIANG W G, CHEN Y Y. Carbon-free co-production of hydrogen and electricity from coal using chemical looping reactors[J]. Proceedings of the CSEE, 2007, 27(23):45-49. |
[68] | ZENG L, HE F, LI F, et al. Coal-direct chemical looping gasification for hydrogen production:reactor modeling and process simulation[J]. Energy & Fuels, 2012, 26(6):3680-3690. |
[69] | CORMOS C C. Assessment of copper-based chemical looping air separation system for energy efficiency improvements of oxy-combustion and gasification power plants[J]. Applied Thermal Engineering, 2018, 130:120-126. |
[70] | PETRESCU L, CORMOS C C. Environmental assessment of IGCC power plants with pre-combustion CO2, capture by chemical & calcium looping methods[J]. Journal of Cleaner Production, 2017, 158:233-244. |
[71] | 黄河, 何芬, 李政, 等. IGCC电厂的工程设计、采购和施工成本的估算模型[J]. 动力工程学报, 2008, 28(3):475-479. HUANG H, HE F, LI Z, et al. Research on IGCC EPC estimation model of China[J]. Journal of Power Engineering, 2008, 28(3):475-479. |
[72] | 周怀荣, 杨庆春, 杨思宇. 油页岩与煤路线制油的技术经济分析和比较[J]. 化工进展, 2016, 35(5):1404-1409. ZHOU H R, YANG Q C, YANG S Y. Techno-economic analysis and comparison of oil shale-to-liquid fuels and coal-to-liquid fuels processes[J]. Chemical Industry and Engineering Progress, 2016, 35(5):1404-1409. |
[1] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[2] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[3] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[4] | Xiaowen ZHOU, Jie DU, Zhanguo ZHANG, Guangwen XU. Study on the methane-pulsing reduction characteristics of Fe2O3-Al2O3 oxygen carrier [J]. CIESC Journal, 2023, 74(6): 2611-2623. |
[5] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[6] | Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548. |
[7] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[8] | Xuqing WANG, Shenglin YAN, Litao ZHU, Xibao ZHANG, Zhenghong LUO. Research progress on the mass transfer process of CO2 absorption by amines in a packed column [J]. CIESC Journal, 2023, 74(1): 237-256. |
[9] | Yingxi DANG, Peng TAN, Xiaoqin LIU, Linbing SUN. Temperature swing for CO2 capture driven by radiative cooling and solar heating [J]. CIESC Journal, 2023, 74(1): 469-478. |
[10] | Yalin WANG, Yuqing PAN, Chenliang LIU. Intermittent process monitoring based on GSA-LSTM dynamic structure feature extraction [J]. CIESC Journal, 2022, 73(9): 3994-4002. |
[11] | Nini YUAN, Tuo GUO, Hongcun BAI, Yurong HE, Yongning YUAN, Jingjing MA, Qingjie GUO. Reaction process of CH4 on the surface of Fe2O3/Al2O3 oxygen carrier in chemical looping combustion: ReaxFF-MD simulation [J]. CIESC Journal, 2022, 73(9): 4054-4061. |
[12] | Mai ZHANG, Yao TIAN, Zhiqi GUO, Ye WANG, Guangjin DOU, Hao SONG. Design and optimization of photocatalysis-biological hybrid system for green synthesis of fuels and chemicals [J]. CIESC Journal, 2022, 73(7): 2774-2789. |
[13] | Kun WANG, Hongbo SHI, Shuai TAN, Bing SONG, Yang TAO. Local time difference constrained neighborhood preserving embedding algorithm for fault detection [J]. CIESC Journal, 2022, 73(7): 3109-3119. |
[14] | Miao LI, Hong ZHAO, Biao JIANG, Siyuan CHEN, Long YAN. Thermodynamic analysis on synthesis of key intermediate BaC2 in coal to acetylene [J]. CIESC Journal, 2022, 73(5): 1908-1919. |
[15] | Xin ZHANG, Li ZHOU, Shihui WANG, Xu JI, Kexin BI. Integrated optimization of refinery hydrogen networks with crude oil properties fluctuations [J]. CIESC Journal, 2022, 73(4): 1631-1646. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||