CIESC Journal ›› 2022, Vol. 73 ›› Issue (4): 1631-1646.DOI: 10.11949/0438-1157.20211657
• Process system engineering • Previous Articles Next Articles
Xin ZHANG(),Li ZHOU(),Shihui WANG,Xu JI,Kexin BI
Received:
2021-11-18
Revised:
2022-01-07
Online:
2022-04-25
Published:
2022-04-05
Contact:
Li ZHOU
通讯作者:
周利
作者简介:
张欣(1997—),女,硕士研究生,基金资助:
CLC Number:
Xin ZHANG, Li ZHOU, Shihui WANG, Xu JI, Kexin BI. Integrated optimization of refinery hydrogen networks with crude oil properties fluctuations[J]. CIESC Journal, 2022, 73(4): 1631-1646.
张欣, 周利, 王诗慧, 吉旭, 毕可鑫. 考虑原油性质波动的炼厂氢气网络集成优化[J]. 化工学报, 2022, 73(4): 1631-1646.
Add to citation manager EndNote|Ris|BibTeX
场景 | 硫含量/(mg/kg) | 氮含量/(mg/kg) | 发生概率 |
---|---|---|---|
1 | 0.9097 | 0.2016 | 0.0400 |
2 | 0.9097 | 0.2058 | 0.1000 |
3 | 0.9097 | 0.2100 | 0.0600 |
4 | 0.9493 | 0.2016 | 0.1000 |
5 | 0.9493 | 0.2058 | 0.2500 |
6 | 0.9493 | 0.2100 | 0.1500 |
7 | 0.9888 | 0.2106 | 0.0600 |
8 | 0.9888 | 0.2058 | 0.1500 |
9 | 0.9888 | 0.2100 | 0.0900 |
Table 1 Sulfur and nitrogen content data of crude oil in each scenario
场景 | 硫含量/(mg/kg) | 氮含量/(mg/kg) | 发生概率 |
---|---|---|---|
1 | 0.9097 | 0.2016 | 0.0400 |
2 | 0.9097 | 0.2058 | 0.1000 |
3 | 0.9097 | 0.2100 | 0.0600 |
4 | 0.9493 | 0.2016 | 0.1000 |
5 | 0.9493 | 0.2058 | 0.2500 |
6 | 0.9493 | 0.2100 | 0.1500 |
7 | 0.9888 | 0.2106 | 0.0600 |
8 | 0.9888 | 0.2058 | 0.1500 |
9 | 0.9888 | 0.2100 | 0.0900 |
加氢处理装置 | 油品流量/(t/h) | T/K | P/bar | LHSV/h-1 |
---|---|---|---|---|
DHT-1 | 150.00 | 633 | 67.2 | 1.92 |
DHT-2 | 373.81 | 648 | 70.0 | 2.00 |
GHT | 216.67 | 513 | 27.0 | 3.00 |
KHT-1 | 50.00 | 553 | 38.3 | 2.25 |
KHT-2 | 70.00 | 573 | 54.5 | 1.79 |
Table 2 Feed flowrate and operating conditions of hydrotreaters
加氢处理装置 | 油品流量/(t/h) | T/K | P/bar | LHSV/h-1 |
---|---|---|---|---|
DHT-1 | 150.00 | 633 | 67.2 | 1.92 |
DHT-2 | 373.81 | 648 | 70.0 | 2.00 |
GHT | 216.67 | 513 | 27.0 | 3.00 |
KHT-1 | 50.00 | 553 | 38.3 | 2.25 |
KHT-2 | 70.00 | 573 | 54.5 | 1.79 |
项目 | 距离/m | ||||
---|---|---|---|---|---|
DHT-1 | DHT-2 | GHT | KHT-1 | KHT-2 | |
HP-DS | 540 | 360 | 350 | 450 | 550 |
LP-DS | 480 | 310 | 500 | 750 | 90 |
Table 3 Piping distances among the reserved location for the desulfurization units and the hydrogen sinks
项目 | 距离/m | ||||
---|---|---|---|---|---|
DHT-1 | DHT-2 | GHT | KHT-1 | KHT-2 | |
HP-DS | 540 | 360 | 350 | 450 | 550 |
LP-DS | 480 | 310 | 500 | 750 | 90 |
Item | DHT-1 | DHT-2 | GHT | KHT-1 | KHT-2 |
---|---|---|---|---|---|
DHT1-PC1 | 0.7041 | 0 | 0 | 0 | 0 |
DHT1-PC2 | 0.2959 | 0 | 0 | 0 | 0 |
DHT2-PC1 | 0 | 0.7935 | 0 | 0 | 0 |
DHT2-PC2 | 0 | 0.2065 | 0 | 0 | 0 |
GHT-PC | 0 | 0 | 1.0000 | 0 | 0 |
KHT1-PC | 0 | 0 | 0 | 1.0000 | 0 |
KHT2-PC | 0 | 0 | 0 | 0 | 1.0000 |
Table 4 Feed composition of hydrotreaters
Item | DHT-1 | DHT-2 | GHT | KHT-1 | KHT-2 |
---|---|---|---|---|---|
DHT1-PC1 | 0.7041 | 0 | 0 | 0 | 0 |
DHT1-PC2 | 0.2959 | 0 | 0 | 0 | 0 |
DHT2-PC1 | 0 | 0.7935 | 0 | 0 | 0 |
DHT2-PC2 | 0 | 0.2065 | 0 | 0 | 0 |
GHT-PC | 0 | 0 | 1.0000 | 0 | 0 |
KHT1-PC | 0 | 0 | 0 | 1.0000 | 0 |
KHT2-PC | 0 | 0 | 0 | 0 | 1.0000 |
虚拟组分 | 相对密度 | 分子量 | 馏程/℃ | ||||
---|---|---|---|---|---|---|---|
HK(初馏点) | 10% | 50% | 90% | KK(终馏点) | |||
DHT1-PC1 | 0.8478 | 239.567 | 208 | 249 | 300 | 346 | 370 |
DHT1-PC2 | 0.8647 | 246.974 | 225 | 256 | 311 | 354 | 380 |
DHT2-PC1 | 0.8439 | 233.709 | 211 | 248 | 291 | 347 | 370 |
DHT2-PC2 | 0.8396 | 227.525 | 180 | 233 | 288 | 348 | 376 |
GHT-PC | 0.7441 | 95.420 | 36.9 | 49.9 | 105 | 172 | 202 |
KHT1-PC | 0.7832 | 155.505 | 151 | 172 | 189 | 230 | — |
KHT2-PC | 0.8122 | 180.524 | — | 124 | 257 | 363 | 373 |
Table 5 Properties of pseudo-components
虚拟组分 | 相对密度 | 分子量 | 馏程/℃ | ||||
---|---|---|---|---|---|---|---|
HK(初馏点) | 10% | 50% | 90% | KK(终馏点) | |||
DHT1-PC1 | 0.8478 | 239.567 | 208 | 249 | 300 | 346 | 370 |
DHT1-PC2 | 0.8647 | 246.974 | 225 | 256 | 311 | 354 | 380 |
DHT2-PC1 | 0.8439 | 233.709 | 211 | 248 | 291 | 347 | 370 |
DHT2-PC2 | 0.8396 | 227.525 | 180 | 233 | 288 | 348 | 376 |
GHT-PC | 0.7441 | 95.420 | 36.9 | 49.9 | 105 | 172 | 202 |
KHT1-PC | 0.7832 | 155.505 | 151 | 172 | 189 | 230 | — |
KHT2-PC | 0.8122 | 180.524 | — | 124 | 257 | 363 | 373 |
项目 | 输入变量范围/(kmol/h) | ||||||||
---|---|---|---|---|---|---|---|---|---|
HP-DSU | 7000 | 500 | 100 | 90 | 35 | 10 | 40 | 10 | 65 |
HP-DSL | 3000 | 170 | 45 | 40 | 10 | 1.5 | 10 | 2 | 10 |
LP-DSU | 150 | 40 | 8.4 | 5 | 1 | 0.5 | 4.0 | 0.15 | 10 |
LP-DSL | 20 | 5 | 0.5 | 0.1 | 0.1 | 0.01 | 0.1 | 0.01 | 2 |
Table 6 Domain of the input variables for the desulfurization unit
项目 | 输入变量范围/(kmol/h) | ||||||||
---|---|---|---|---|---|---|---|---|---|
HP-DSU | 7000 | 500 | 100 | 90 | 35 | 10 | 40 | 10 | 65 |
HP-DSL | 3000 | 170 | 45 | 40 | 10 | 1.5 | 10 | 2 | 10 |
LP-DSU | 150 | 40 | 8.4 | 5 | 1 | 0.5 | 4.0 | 0.15 | 10 |
LP-DSL | 20 | 5 | 0.5 | 0.1 | 0.1 | 0.01 | 0.1 | 0.01 | 2 |
输出变量 | HP-DS单元 | LP-DS单元 | ||
---|---|---|---|---|
RMSE | R2 | RMSE | R2 | |
0.00023 | 0.9999 | 0.00001 | 0.9999 | |
0.00034 | 0.9999 | 0.00007 | 0.9999 | |
0.00429 | 0.9996 | 0.00333 | 0.9997 | |
0.01490 | 0.9948 | 0.00430 | 0.9996 | |
0.02499 | 0.9888 | 0.01656 | 0.9940 | |
0.00485 | 0.9993 | 0.00034 | 0.9999 |
Table 7 Results from the data correlation of the desulfurization unit
输出变量 | HP-DS单元 | LP-DS单元 | ||
---|---|---|---|---|
RMSE | R2 | RMSE | R2 | |
0.00023 | 0.9999 | 0.00001 | 0.9999 | |
0.00034 | 0.9999 | 0.00007 | 0.9999 | |
0.00429 | 0.9996 | 0.00333 | 0.9997 | |
0.01490 | 0.9948 | 0.00430 | 0.9996 | |
0.02499 | 0.9888 | 0.01656 | 0.9940 | |
0.00485 | 0.9993 | 0.00034 | 0.9999 |
项目 | 原氢气网络模型 | 确定性模型 | 随机规划模型 |
---|---|---|---|
变量数量 | 62 | 97 | 97 |
方程个数 | 68 | 132 | 132 |
CPU计算时间 | 0.016 s | 2.578 s | 44.875 s |
计算机配置 | 64位操作系统,16 GB RAM 1.10 GHz Intel Core i7-10710U | ||
求解器 | GAMS-DICOPT |
Table 9 Computational effort of the solver and optimization time for different models
项目 | 原氢气网络模型 | 确定性模型 | 随机规划模型 |
---|---|---|---|
变量数量 | 62 | 97 | 97 |
方程个数 | 68 | 132 | 132 |
CPU计算时间 | 0.016 s | 2.578 s | 44.875 s |
计算机配置 | 64位操作系统,16 GB RAM 1.10 GHz Intel Core i7-10710U | ||
求解器 | GAMS-DICOPT |
1 | Simpson D M. Hydrogen management in a synthetic crude refinery[J]. International Journal of Hydrogen Energy, 1984, 9(1/2): 95-99. |
2 | Alves J J, Towler G P. Analysis of refinery hydrogen distribution systems[J]. Industrial & Engineering Chemistry Research, 2002, 41(23): 5759-5769. |
3 | Liao Z W, Rong G, Wang J D, et al. Rigorous algorithmic targeting methods for hydrogen networks(Ⅱ): Systems with one hydrogen purification unit[J]. Chemical Engineering Science, 2011, 66(5): 821-833. |
4 | 杨敏博, 冯霄. 提纯回用氢网络的夹点变化规律[J]. 化工学报, 2013, 64(12): 4544-4549. |
Yang M B, Feng X. Change rules of pinch point for hydrogen distribution systems with purification reuse[J]. CIESC Journal, 2013, 64(12): 4544-4549. | |
5 | Hallale N, Liu F. Refinery hydrogen management for clean fuels production[J]. Advances in Environmental Research, 2001, 6(1): 81-98. |
6 | Liu F, Zhang N. Strategy of purifier selection and integration in hydrogen networks[J]. Chemical Engineering Research and Design, 2004, 82(10): 1315-1330. |
7 | Liao Z W, Wang J D, Yang Y R, et al. Integrating purifiers in refinery hydrogen networks: a retrofit case study[J]. Journal of Cleaner Production, 2010, 18(3): 233-241. |
8 | Liao Z W, Tu G N, Lou J Y, et al. The influence of purifier models on hydrogen network optimization: insights from a case study[J]. International Journal of Hydrogen Energy, 2016, 41(10): 5243-5249. |
9 | 李开宇, 刘桂莲. 储氢提纯和氢网络的耦合优化[J]. 化工学报, 2020, 71(3): 1143-1153. |
Li K Y, Liu G L. Coupling optimization of hydrogen-storage based purification and hydrogen network[J]. CIESC Journal, 2020, 71(3): 1143-1153. | |
10 | Liu G L, Tang M Y, Feng X, et al. Evolutionary design methodology for resource allocation networks with multiple impurities[J]. Industrial & Engineering Chemistry Research, 2011, 50(5): 2959-2970. |
11 | 刘桂莲, 刘永彪, 冯霄. 炼厂多杂质氢网络的集成[J]. 化工学报, 2012, 63(1): 163-169. |
Liu G L, Liu Y B, Feng X. Integration of refinery hydrogen network with multiple impurities[J]. CIESC Journal, 2012, 63(1): 163-169. | |
12 | Lou Y Q, Liao Z W, Sun J Y, et al. A novel two-step method to design inter-plant hydrogen network[J]. International Journal of Hydrogen Energy, 2019, 44(12): 5686-5695. |
13 | Jia N, Zhang N. Multi-component optimisation for refinery hydrogen networks[J]. Energy, 2011, 36(8): 4663-4670. |
14 | Umana B, Shoaib A, Zhang N, et al. Integrating hydroprocessors in refinery hydrogen network optimisation [J]. Applied Energy, 2014, 133: 169-182. |
15 | Umana B, Zhang N, Smith R. Development of vacuum residue hydrodesulphurization-hydrocracking models and their integration with refinery hydrogen networks[J]. Industrial & Engineering Chemistry Research, 2016, 55(8): 2391-2406. |
16 | Zhang Q, Li J, Feng X. Thermodynamic principle based hydrogen network synthesis with hydrorefining feed oil sulfur content variation for total exergy minimization[J]. Journal of Cleaner Production, 2020, 256: 120230. |
17 | Zhou L, Liao Z W, Wang J D, et al. Hydrogen sulfide removal process embedded optimization of hydrogen network[J]. International Journal of Hydrogen Energy, 2012, 37(23): 18163-18174. |
18 | Yang M B, Feng X. Simulation-based optimization and design of refinery hydrogen networks with hydrogen sulfide removal[J]. International Journal of Hydrogen Energy, 2019, 44(43): 23833-23845. |
19 | Wang S H, Zhou L, Ji X, et al. A surrogate-assisted approach for the optimal synthesis of refinery hydrogen networks[J]. Industrial & Engineering Chemistry Research, 2019, 58(36): 16798-16812. |
20 | Li H R, Liao Z W, Sun J Y, et al. Simultaneous design of hydrogen allocation networks and PSA inside refineries[J]. Industrial & Engineering Chemistry Research, 2020, 59(10): 4712-4720. |
21 | Xia Z P, Wang S H, Zhou L, et al. Surrogate-assisted optimization of refinery hydrogen networks with hydrogen sulfide removal[J]. Journal of Cleaner Production, 2021, 310: 127477. |
22 | Chen Y, Lin M, Jiang H, et al. Optimal design and operation of refinery hydrogen systems under multi-scale uncertainties[J]. Computers & Chemical Engineering, 2020, 138: 106822. |
23 | Sahinidis N V. Optimization under uncertainty: state-of-the-art and opportunities[J]. Computers & Chemical Engineering, 2004, 28(6/7): 971-983. |
24 | Almansoori A, Shah N. Design and operation of a future hydrogen supply chain: snapshot model[J]. Chemical Engineering Research and Design, 2006, 84(6): 423-438. |
25 | Betancourt-torcat A, Almansoori A, Elkamel A, et al. Stochastic modeling of the oil sands operations under greenhouse gas emission restrictions and water management[J]. Energy & Fuels, 2013, 27(9): 5559-5578. |
26 | Jiao Y Q, Su H Y, Hou W F, et al. Optimization of refinery hydrogen network based on chance constrained programming[J]. Chemical Engineering Research and Design, 2012, 90(10): 1553-1567. |
27 | Jagannath A, Almansoori A. Modeling of hydrogen networks in a refinery using a stochastic programming appraoch[J]. Industrial & Engineering Chemistry Research, 2014, 53(51): 19715-19735. |
28 | Lou J Y, Liao Z W, Jiang B B, et al. Robust optimization of hydrogen network[J]. International Journal of Hydrogen Energy, 2014, 39(3): 1210-1219. |
29 | Lin D K J, Box G E P, Draper N R, et al. Empirical model building and response surface[J]. Journal of the American Statistical Association, 1998, 93(441): 401. |
30 | Kleijnen J P C. Kriging metamodeling in simulation: a review[J]. European Journal of Operational Research, 2009, 192(3): 707-716. |
31 | Drucker H, Surges C J C, Kaufman L, et al. Support vector regression machines[J]. Advances in Neural Information Processing Systems, 1997: 155-161. |
32 | Haykin S S. Neural Networks and Learning Machines[M]. 3rd ed. Pearson Education: Upper Saddle River, 2009. |
33 | Brownbridge G, Azadi P, Smallbone A, et al. The future viability of algae-derived biodiesel under economic and technical uncertainties[J]. Bioresource Technology, 2014, 151: 166-173. |
34 | Sobol I M. On the distribution of points in a cube and the approximate evaluation of integrals[J]. USSR Computational Mathematics and Mathematical Physics, 1967, 7(4): 86-112. |
35 | 李梅, 程逵炜, 孙兆虎, 等. 井口天然气醇胺法脱酸系统的模拟优化[J]. 工程热物理学报, 2015, 36(9): 1853-1857. |
Li M, Cheng K W, Sun Z H, et al. Optimization of the miniature wellhead natural gas alkanolamine process deacidification units[J]. Journal of Engineering Thermophysics, 2015, 36(9): 1853-1857. | |
36 | 任远春, 刘为民, 霍明辰, 等. 常减压装置腐蚀性介质氯、氮、硫分布及传递研究[J]. 广东化工, 2021, 48(10): 179-181. |
Ren Y C, Liu W M, Huo M C, et al. Research on distribution and transfer of corrosive media chlorine, nitrogen and sulfur in crude unit[J]. Guangdong Chemical Industry, 2021, 48(10): 179-181. | |
37 | Wu L, Wang Y Q, Zheng L, et al. Stepwise optimization of hydrogen network integrated sulfur compound removal kinetics and a fluid catalytic cracker[J]. Chemical Engineering Research and Design, 2019, 151: 168-178. |
38 | Hasenberg D M, Campagnolo J F Jr. Modeling and simulation of a reaction for hydrotreating hydrocarbon oil: US5841678[P]. 1998-11-24. |
39 | 宣吉, 廖祖维, 荣冈, 等. 基于随机规划的炼厂氢网络改造设计[J]. 化工学报, 2010, 61(2): 398-404. |
Xuan J, Liao Z W, Rong G, et al. Hydrogen network retrofit design in refinery based on stochastic programming[J]. CIESC Journal, 2010, 61(2): 398-404. | |
40 | Viswanathan J, Grossmann I E. A combined penalty function and outer-approximation method for MINLP optimization[J]. Computers & Chemical Engineering, 1990, 14(7): 769-782. |
[1] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[2] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[3] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[4] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[5] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[6] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[7] | Jinbo JIANG, Xin PENG, Wenxuan XU, Rixiu MEN, Chang LIU, Xudong PENG. Study on leakage characteristics and parameter influence of pump-out spiral groove oil-gas seal [J]. CIESC Journal, 2023, 74(6): 2538-2554. |
[8] | Yuanzhe SHAO, Zhonggai ZHAO, Fei LIU. Quality-related non-stationary process fault detection method by common trends model [J]. CIESC Journal, 2023, 74(6): 2522-2537. |
[9] | Shanghao LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Optimization of ternary-distillation sequence based on gradient boosting decision tree [J]. CIESC Journal, 2023, 74(5): 2075-2087. |
[10] | Bimao ZHOU, Shisen XU, Xiaoxiao WANG, Gang LIU, Xiaoyu LI, Yongqiang REN, Houzhang TAN. Effect of burner bias angle on distribution characteristics of gasifier slag layer [J]. CIESC Journal, 2023, 74(5): 1939-1949. |
[11] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[12] | Xiaoyong GAO, Fuyu HUANG, Wanpeng ZHENG, Diao PENG, Yixu YANG, Dexian HUANG. Scheduling optimization of refinery and chemical production process considering the safety and stability of scheduling operation [J]. CIESC Journal, 2023, 74(4): 1619-1629. |
[13] | Jiyuan LI, Jinwang LI, Liuwei ZHOU. Heat transfer performance of cold plates with different turbulence structures [J]. CIESC Journal, 2023, 74(4): 1474-1488. |
[14] | Wenxuan XU, Jinbo JIANG, Xin PENG, Rixiu MEN, Chang LIU, Xudong PENG. Comparative study on leakage and film-forming characteristics of oil-gas seal with three-typical groove in a wide speed range [J]. CIESC Journal, 2023, 74(4): 1660-1679. |
[15] | Sheng’an ZHANG, Guilian LIU. Multi-objective optimization of high-efficiency solar water electrolysis hydrogen production system and its performance [J]. CIESC Journal, 2023, 74(3): 1260-1274. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||