CIESC Journal ›› 2018, Vol. 69 ›› Issue (11): 4592-4604.DOI: 10.11949/j.issn.0438-1157.20180582
Previous Articles Next Articles
CAO Moyuan1, BA Teer1, BAI Hao2
Received:
2018-05-30
Revised:
2018-08-12
Online:
2018-11-05
Published:
2018-11-05
Supported by:
supported by the State Key Laboratory of Chemical Engineering (SKL-CHE-16B04) and the Tianjin University (2018XZY-0059).
曹墨源1, 巴特尔1, 柏浩2
通讯作者:
曹墨源
基金资助:
化学工程联合国家重点实验室开放基金项目(SKL-CHE-16B04);天津大学自主基金项目(2018XZY-0059)。
CLC Number:
CAO Moyuan, BA Teer, BAI Hao. Applications of bio-inspired surfaces possessing special wettability in chemical engineering and technology[J]. CIESC Journal, 2018, 69(11): 4592-4604.
曹墨源, 巴特尔, 柏浩. 仿生特殊浸润性界面在化学工程与工艺中的应用[J]. 化工学报, 2018, 69(11): 4592-4604.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20180582
[1] | FENG L, LI S H, LI Y S, et al. Super-hydrophobic surfaces:from natural to artificial[J]. Adv. Mater., 2002, 14(24):1857-1860. |
[2] | JIANG L, ZHAO Y, ZHAI J. A lotus-leaf-like superhydrophobic surface:a porous microsphere/nanofiber composite film prepared by electrohydrodynamics[J]. Angew. Chem. Int. Ed., 2004, 43(33):4338-4341. |
[3] | LIU M J, WANG S T, WEI Z X, et al. Superoleophobic surfaces:bioinspired design of a superoleophobic and low adhesive water/solid interface[J]. Adv. Mater., 2009, 21(6):665-669. |
[4] | JIANG L, CHEN H W, ZHANG P F, et al. Continuous directional water transport on the peristome surface of Nepenthes alata[J]. Nature, 2016, 532(3):85-89. |
[5] | PARKER A R, LAWRENCE C R. Water capture by a desert beetle[J]. Nature, 2001, 414(6859):33-34. |
[6] | HU D L, CHAN B, BUSH J W M. The hydrodynamics of water strider locomotion[J]. Nature, 2003, 424(6949):663-666. |
[7] | ELIASON C M, SHAWKEY M D. Decreased hydrophobicity of iridescent feathers:a potential cost of shiny plumage[J]. J. Exp. Biol., 2011, 214(13):2157-2163. |
[8] | CAO M Y, JIANG L. Superwettability integration:concepts, design and applications[J]. Surface Innov., 2016, 4(4):180-194. |
[9] | SETHI S, L GE, L CI, et al. Gecko-inspired carbon nanotube-based self-cleaning adhesives[J]. Nano Letters, 2008, 8(3):822-825. |
[10] | DRELICH J, CHIBOWSKI E. Superhydrophilic and superwetting surfaces:definition and mechanisms of control[J]. Langmuir, 2010, 26(24):18621-18623. |
[11] | DRELICH J, CHIBOWSKI E, MENG D D. Hydrophilic and superhydrophilic surfaces and materials[J]. Soft Matter, 2011, 7(21):9804-9828. |
[12] | LIU M J, ZHENG Y M, ZHAI J. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion[J]. Acc. Chem. Res., 2010, 43(3):368-377. |
[13] | LIN L, LIU M J, CHEN L, et al. Bio-inspired hierarchical macromolecule-nanoclay hydrogels for robust underwater superoleophobicity[J]. Adv. Mater., 2010, 22(43):4826-4830. |
[14] | TIAN Y, SU B, JIANG L. Interfacial material system exhibiting superwettability[J]. Adv. Mater., 2014, 26(40):6872-6897. |
[15] | 杨卧龙, 徐进良, 纪献兵. 超亲水多孔表面的小液滴发射行为及动力学特性[J]. 化工学报, 2016, 67(9):3607-3615. YANG W L, XU J L, JI X B. Ejection profile and kinetics of droplets spreading on superhydrophilic porous surfaces[J]. CIESC Journal, 2016, 67(9):3607-3615. |
[16] | 李栋, 王鑫, 高尚文, 等. 单液滴撞击超疏水冷表面的反弹及破碎行为[J]. 化工学报, 2017, 68(6):2473-2482. LI D, WANG X, GAO S W, et al. Rebounding and splashing behavior of single water droplet impacting on cold superhydrophobic surface[J]. CIESC Journal, 2017, 68(6):2473-2482. |
[17] | 马学虎, 兰忠, 王凯, 等. 舞动的液滴:界面现象与过程调控[J]. 化工学报, 2018, 69(1):6-43. MA X H, LAN Z, WANG K, et al. Dancing droplet:interface phenomena and process regulation[J]. CIESC Journal, 2018, 69(1):6-43. |
[18] | THOMAS Y. An essay on the cohesion of fluids[J]. Phil. Trans. Roy. Soc. London, 1805, 95:65-87. |
[19] | VOGLER E A. Structure and reactivity of water at biomaterial surfaces[J]. Adv. Colloid Interface Sci., 1998, 74(1/2/3):69-117. |
[20] | WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Ind. Eng. Chem., 1936, 28(8):988-994. |
[21] | CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Trans. Faraday Soc., 1944, 40:546-551. |
[22] | LORENCEAU L, QUR D. Drops on a conical wire[J]. J. Fluid Mech., 1999, 510:29-45. |
[23] | LUO C, HENG X, XIANG M. Behavior of a liquid drop between two nonparallel plates[J]. Langmuir, 2014, 30(28):8373-8380. |
[24] | HENG X, LUO C. Separation of oil from a water/oil mixed drop using two nonparallel plates[J]. Langmuir, 2014, 30(33):10002-10010. |
[25] | 柴诚敬, 张国亮. 化工流体流动与传热[M]. 2版. 北京:化学工业出版社, 2007:1. CHAI C J, ZHANG G L. Fluid Dynamics and Heat Transfer[M]. 2nd ed. Beijing:Chemical Industry Press, 2007:1. |
[26] | GONG X J, GAO X F, JIANG L. Recent progress in bionic condensate microdrop self-propelling surfaces[J]. Adv. Mater., 2017, 29(45):1-14. |
[27] | DANIEL S, CHAUDHURY M K, CHEN J C. Fast drop movements resulting from the phase change on a gradient surface[J]. Science, 2001, 291(5504):633-636. |
[28] | ROSE J W. Dropwise condensation theory and experiment:a review[J]. Proc. Inst. Mech. Eng., Part A, 2002, 216(2):115-128. |
[29] | CHEN J C. Surface contact-its significance for multiphase heat transfer:diverse examples[J]. J. Heat Transfer, 2003, 125(4):549-566. |
[30] | MILJKOVIC N, ENRIGHT R, NAM Y, et al. Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces[J]. Nano Letters, 2013, 13(1):179-187. |
[31] | WEN R F, LI Q, WU J F, et al. Hydrophobic copper nanowires for enhancing condensation heat transfer[J]. Nano Energy, 2017, 33:177-183. |
[32] | ZHU J, LUO Y T, TIAN J, et al. Clustered ribbed-nanoneedle structured copper surfaces with high-efficiency dropwise condensation heat transfer performance[J]. ACS Appl. Mater. Interfaces, 2015, 7(20):10660-10665. |
[33] | CHO H J, PRESTON D J, ZHU Y Y, et al. Nanoengineered materials for liquid-vapour phase-change heat transfer[J]. Nat. Rev. Mater., 2016, 2(2):1-17. |
[34] | EL-BOURAWI M S, DING Z, MA R, et al. Review:a framework for better understanding membrane distillation separation process[J]. J. Membrane Sci., 2006, 285(1):4-29. |
[35] | 田苗苗, 李雪梅, 殷勇, 等. 超疏水膜的制备及其在膜蒸馏过程中的应用[J]. 化学进展, 2015, 27(8):1033-1041. TIAN M M, LI X M, YIN Y, et al. Preparation of superhydrophobic membranes and their application in membrane distillation[J]. Progress in Chemistry, 2015, 27(8):1033-1041. |
[36] | 丁春立, 林帝出, 王德武, 等. 电纺及疏水改性制备CA/SiNPs-FAS超疏水复合膜及膜蒸馏脱盐研究[J]. 化工学报, 2018, 69(4):1774-1782. DING C L, LIN D C, WANG D W, et al. Preparation of superhydrophobic CA/SiNPs-FAS electrospun nanofibrous membranes for direct contact membrane distillation[J]. CIESC Journal, 2018, 69(4):1774-1782. |
[37] | RAZMJOU A, ARIFIN E, DONG G, et al. Superhydrophobic modification of TiO2 nanocomposite PVDF membranes for applications in membrane distillation[J]. J. Membrane Sci., 2012, 415/416(10):850-863. |
[38] | ZHANG J, SONG Z Y, LI B A, et al. Fabrication and characterization of superhydrophobic poly(vinylidene fluoride) membrane for direct contact membrane distillation[J]. Desalination, 2013, 324:1-10. |
[39] | CUI Y, LI D W, BAI H. Bioinspired smart materials for directional liquid transport[J]. Ind. Eng. Chem. Res., 2017, 56(17):4887-4898. |
[40] | XUE Z, WANG S, LIN L, et al. A novel superhydrophilic and underwater superoleophobic hydrogel-coated mesh for oil/water separation[J]. Adv. Mater., 2011, 23(37):4270-4273. |
[41] | SHI Z, ZHANG W B, ZHANG F, et al. Ultrafast separation of emulsified oil/water mixtures by ultrathin free-standing single-walled carbon nanotube network films[J]. Adv. Mater., 2013, 25(17):2422-2427. |
[42] | GEYER F, SCHONECKER C, BUTT H J, et al. Enhancing CO2 capture using robust superomniphobic membranes[J]. Adv. Mater., 2016, 29(5):1-6. |
[43] | WANG L, ZHAO Y, TIAN Y, et al. A general strategy for the separation of immiscible organic liquids by manipulating the surface tensions of nanofibrous membranes[J]. Angew. Chem., 2015, 127(49):14732-14737. |
[44] | CAO Z F, P Q, PEI C, et al. Super-hydrophobic coating used in corrosion protection of metal material:review, discussion and prospects[J]. Metallurgical Res. Tech., 2017, 114(2):1-11. |
[45] | FIHRI A, BOVERO E, AL-SHAHRANI, et al. Recent progress in superhydrophobic coatings used for steel protection:a review[J]. Colloids Surfaces A, 2017, 520:378-390. |
[46] | SU C H, LI J, GENG,H B, et al. Fabrication of an optically transparent super-hydrophobic surface via embedding nano-silica[J]. Appl. Surf. Sci., 2006, 253(5):2633-2636. |
[47] | BHAGAT S D, KIM Y, AHN Y. Room temperature synthesis of water repellent silica coatings by the dip coat technique[J]. Appl. Surf. Sci., 2006, 253(4):2217-2221. |
[48] | CHEN L J, CHEN M, ZHOU H D, et al. Preparation of super-hydrophobic surface on stainless steel[J]. Appl. Surf. Sci., 2008, 255(5):3459-3462. |
[49] | RIXENS B, SEVERAC1 R, BOUTEVIN B, et al. Migration of additives in polymer coatings:fluorinated additives and poly(vinylidene chloride)-based matrix[J]. Polymer, 2005, 46(11):3579-3587. |
[50] | BURRIS D L, SAWYER W G. Improved wear resistance in alumina-PTFE nanocomposites with irregular shaped nanoparticles[J]. Wear, 2006, 260(7):915-918. |
[51] | CHEN W X, LI F, HAN G, et al. Tribological behavior of carbon-nanotube-filled PTFE composites[J]. Tribology Letters, 2003, 15(3):275-278. |
[52] | ZHANG H J, ZHANG Z Z, GUO F, et al. Enhanced wear properties of hybrid PTFE/cotton fabric composites filled with functionalized multi-walled carbon nanotubes[J]. Mater. Chem. Phys., 2009, 116(1):183-190. |
[53] | TANG Y C, YANG J, YIN L T, et al. Fabrication of superhydrophobic polyurethane/MoS2 nanocomposite coatings with wear-resistance[J]. Colloids Surfaces A, 2014, 459:261-266. |
[54] | LUO Z Z, ZHANG Z Z, HU L T, et al. Stable bionic superhydrophobic coating surface fabricated by a conventional curing process[J]. Adv. Mater., 2008, 20(5):970-974. |
[55] | HU Z Y, WANG H Y, ZHU Y X, et al. Rapid development of thickness-controllable superamphiphobic coating on the inner wall of long narrow pipes[J]. AIChE Journal, 2017, 63(9):3636-3641. |
[56] | 李春曦, 张硕, 薛全喜, 等. 基于抛物线形气-液界面的超疏水微通道减阻特性[J]. 化工学报, 2016, 67(10):4126-4134. LI C X, ZHANG S, XUE Q X, et al. Drag reduction of superhydrophobic microchannels based on parabolic gas-liquid interfaces[J]. CIESC Journal, 2016, 67(10):4126-4134. |
[57] | JU J, BAI H, ZHENG Y M, et al. A multi-structural and multi-functional integrated fog collection system in cactus[J]. Nat. Commun., 2012, 3(4):1247 |
[58] | JU J, XIAO K, BAI H, et al. Bioinspired conical copper wire with gradient wettability for continuous and efficient fog collection[J]. Adv. Mater., 2013, 25(41):5937-5942. |
[59] | CAO M Y, JU J, LI K, et al. Facile and large-scale fabrication of a cactus-inspired continuous fog collector[J]. Adv. Mater., 2014, 24(21):3235-3240. |
[60] | ZHENG Y M, BAI H, HUANG Z B, et al. Directional water collection on wetted spider silk[J]. Nature, 2010, 463(7281):640-643. |
[61] | BAI H, JU J, JIANG L, et al. Large-scale fabrication of bioinspired fibers for directional water collection[J]. Small, 2011, 7(24):3429-3433. |
[62] | XUE Y, CHEN Y, WANG T, et al. Directional size-triggered microdroplet target transport on gradient-step fibers[J]. J. Mater. Chem. A, 2014, 2(20):7156-7160. |
[63] | MALIK F T, CLEMENT R M, GRIFFITHS P, et al. Hierarchical structures of cactus spines that aid in the directional movement of dew droplets[J]. Phil. Trans. R. Soc., 2016, 374(2073):1-16. |
[64] | HENG X, LUO C. Bioinspired plate-based fog collectors[J]. ACS Appl. Mater. Interfaces, 2014, 6(18):16257-16266. |
[65] | GENG H, BAI H Y, FAN Y Y, et al. Unidirectional water delivery on a superhydrophilic surface with two-dimensional asymmetrical wettability barriers[J]. Mater. Horiz., 2018, 5(2):303-308. |
[66] | CAO M Y, JIN X, PENG Y, et al. Unidirectional wetting properties on multi-bioinspired magnetocontrollable slippery microcilia[J]. Adv. Mater., 2017, 29(23):1606869. |
[67] | ZHANG Z H, ZHANG B, MA H Y, et al. Bioinspired pressure-tolerant asymmetric slippery surface for continuous self-transport of gas bubbles in aqueous environment[J]. ACS Nano, 2018, 12(2):2048-2055. |
[68] | MA H Y, CAO M Y, ZHANG C H, et al. Directional and continuous transport of gas bubbles on superaerophilic geometry-gradient surfaces in aqueous environments[J]. Adv. Funct. Mater., 2018, 28(7):1705091. |
[69] | LU Z Y, ZHU W, YU X Y, et al. Ultrahigh hydrogen evolution performance of under-water "superaerophobic" MoS2 nanostructured electrodes[J]. Adv. Mater., 2014, 26(17):2683-2687. |
[70] | LIU Z Y, SUN M, XU T H, et al. Superaerophobic electrodes for direct hydrazine fuel cells[J]. Adv. Mater., 2015, 27(14):2361-2366. |
[71] | LEI Y J, SUN R Z, ZHANG X C, et al. Oxygen-rich enzyme biosensor based on superhydrophobic electrode[J]. Adv. Mater., 2016, 28(7):1477-1481. |
[72] | XU C L, XIANG Q, SONG Z Q, et al. A high performance three-phase enzyme electrode based on superhydrophobic mesoporous silicon nanowire arrays for glucose detection[J]. Nanoscale, 2016, 8(14):7391-7395. |
[73] | SHENG X, LIU Z, ZENG R S, et al. Enhanced photocatalytic reaction at air-liquid-solid joint interfaces[J]. J. Am. Chem. Soc., 2017, 139(36):12402-12405. |
[74] | ZHANG Y L, WEI S, LIU F J, et al. Superhydrophobic nanoporous polymers as efficient adsorbents for organic compounds[J]. Nano Today, 2009, 4(2):135-143. |
[75] | LIU F J, LI W, SUN Q, et al. Transesterification to biodiesel with superhydrophobic porous solid base catalysts[J]. Chemsuschem, 2011, 4(8):1059-1062. |
[76] | LIU F J, WANG L, SUN Q, et al. Transesterification catalyzed by ionic liquids on superhydrophobic mesoporous polymers-heterogeneous catalysts that are faster than homogeneous catalysts[J]. J. Am. Chem. Soc., 2012, 134(41):16948-16950. |
[77] | LIU F J, HUANG K, ZHENG A M, et al. Hydrophobic solid acids and their catalytic applications in green and sustainable chemistry[J]. ACS Catal., 2018, 8(1):372-391. |
[1] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[4] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[5] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[6] | Jingwei CHAO, Jiaxing XU, Tingxian LI. Investigation on the heating performance of the tube-free-evaporation based sorption thermal battery [J]. CIESC Journal, 2023, 74(S1): 302-310. |
[7] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[8] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[9] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[10] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[11] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[12] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[13] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[14] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[15] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||