[1] |
王泽斌, 马云, 王强. 含氮废水生物处理技术研究现状及发展趋势[J]. 环境科学与管理, 2011, 9:108-112. WANG Z B, MA Y, WANG Q. Advance and trend of biological nitrogen removal technologies in wastewater treatment[J]. Environmental Science and Management, 2011, 9:108-112.
|
[2] |
LUCK F. Wet air oxidation:past, present and future[J]. Catalysis Today, 1999, 53(1):81-91.
|
[3] |
LEVEC J, PINTAR A. Catalytic wet-air oxidation processes:a review[J]. Catalysis Today, 2007, 124(3/4):172-184.
|
[4] |
BHARGAVA S K, TARDIO J, PRASAD J, et al. Wet oxidation and catalytic wet oxidation[J]. Industrial & Engineering Chemistry Research, 2006, 45(4):1221-1258.
|
[5] |
IMAMURA S. Catalytic and noncatalytic wet oxidation[J]. Industrial & Engineering Chemistry Research, 1999, 38(5):1743-1753.
|
[6] |
HUNG C M, LOU J C, LIN C H. Removal of ammonia solutions used in catalytic wet oxidation processes[J]. Chemosphere, 2003, 52(6):989-995.
|
[7] |
WANG Y, SUN W, WEI H, et al. Extended study of ammonia conversion to N2using a Ru/0.2TiZrO4 catalyst via catalytic wet air oxidation[J]. Catal. Sci. Technol., 2016, 6:6144-6151.
|
[8] |
CAPODAGLIO A G, HLAVINEK P, RABONI M. Physico-chemical technologies for nitrogen removal from wastewaters:a review[J]. Revista Ambiente & Agua, 2015, 10:481-498.
|
[9] |
QIN J, AIKA K. Catalytic wet air oxidation of ammonia over alumina supported metals[J]. Applied Catalysis B:Environmental, 1998, 16:261-268.
|
[10] |
BARBIER J, OLIVIERO L, RENARD B, et al. Catalytic wet air oxidation of ammonia over M/CeO2 catalysts in the treatment of nitrogen-containing pollutants[J]. Catalysis Today, 2002, 75:29-34.
|
[11] |
HIDEKI T, QIN J, AIKA K. Hydrogen-treated active carbon supported palladium catalysts for wet air oxidation of ammonia[J]. Chemistry Letters, 1999, 28(5):377-378.
|
[12] |
付迎春. 催化湿式氧化法处理氨氮废水的研究[D]. 南京:南京工业大学, 2004. FU Y C. Study on treatment of ammonia wastewater by catalytic wet air oxidation process[D]. Nanjing:Nanjing University of Technology, 2004.
|
[13] |
SUTASINEE K N, INAZU K, KOBAYASHI T, et al. Selective wet-air oxidation of diluted aqueous ammonia solutions over supported Ni catalysts[J]. Water Research, 2004, 38:778-782.
|
[14] |
IMAMURA S, DOI A, ISHIDA S. Wet oxidation of ammonia catalyzed by cerium-based composite oxides[J]. Industrial & Engineering Chemistry Product Research and Development, 1985, 24(1):75-80.
|
[15] |
INOUE K, NAKAYAMA D, WATANABE Y. Oxidation of dissolved ammonia using various metal-oxide catalysts[J]. Kagaku Kogaku Ronbunshu, 1986, 12(2):222-223.
|
[16] |
HUNG C M. Catalytic wet oxidation of ammonia solution:activity of the Cu-La-Ce/cordierite composite catalyst[J]. Environmental Engineering Science, 2009, 26(2):351-358.
|
[17] |
UKROPEC R, KUSTER B F M, SCHOUTEN J C, et al. Low temperature oxidation of ammonia to nitrogen in liquid phase[J]. Applied Catalysis B:Environmental, 1999, 23:45-57.
|
[18] |
NEUROCK M, VAN SANTEN R, BIEMOLT W, et al. Atomic and molecular oxygen as chemical precursors in the oxidation of ammonia by copper[J]. Journal of the American Chemical Society, 1994, 116:6860-6872.
|
[19] |
LOUSTEAU C, BESSON M, DESCORME C. Catalytic wet air oxidation of ammonia over supported noble metals[J]. Catalysis Today, 2015, 241:80-85.
|
[20] |
FU J L, YANG K X, MA C J, et al. Bimetallic Ru-Cu as a highly active, selective and stable catalyst for catalytic wet oxidation of aqueous ammonia to nitrogen[J]. Applied Catalysis B:Environmental, 2016, 184:216-222.
|
[21] |
王子丹, Hameed Sohaib, 张诺伟, 等. PdNi/C低温高效催化湿式氧化无害化处理氨氮废水[J]. 厦门大学学报(自然科学版), 2018, 57(1):32-37. WANG Z D, HAMEED S, ZHANG N W, et al. Efficient degrading of ammonia by catalytic wet air oxidation over PdNi/C catalyst under mild condition[J]. Journal of Xiamen University (Natural Science), 2018, 57(1):32-37.
|
[22] |
CRAVANZOLA S, CESANO F, GAZIANO F, et al. Sulfur-doped TiO2:structure and surface properties[J]. Catalysts, 2017, 7:214-225.
|
[23] |
TAN T H, SCOTT J, NG Y H, et al. Understanding plasmon and band gap photoexcitation effects on the thermal-catalytic oxidation of ethanol by TiO2-supported gold[J]. ACS Catal., 2016, 6:1870-1879.
|
[24] |
SALAZAR J B, FALCONE D D, PHAM H N, et al. Selective production of 1, 2-propanediol by hydrogenolysis of glycerol over bimetallic Ru-Cu nanoparticles supported on TiO2[J]. Applied Catalysis A:General, 2014, 482:137-144.
|
[25] |
REQUIES J, GÜEMEZ M B, IRIONDO A, et al. Biobutanol dehydrogenation to butyraldehyde over Cu, Ru and Ru-Cu supported catalysts. Noble metal addition and different support effects[J]. Catal. Lett., 2012, 142:50-59.
|
[26] |
BALARAJU M, REKHA V, DEVI B, et al. Surface and structural properties of titania-supported Ru catalysts for hydrogenolysis of glycerol[J]. Applied Catalysis A:General, 2010, 384(1/2):107-114.
|
[27] |
HAMZAH N, NORDINC N M, NADZRI A H A, et al. Enhanced activity of Ru/TiO2 catalyst using bisupport, bentonite-TiO2 for hydrogenolysis of glycerol in aqueous media[J]. Applied Catalysis A:General, 2012, 419/420:133-141.
|
[28] |
TADA S, KIKUCHI R, TAKAGAKI A, et al. Effect of metal addition to Ru/TiO2 catalyst on selective CO methanation[J]. Catalysis Today, 2014, 232:16-21.
|
[29] |
LU M H, DU H, WEI B, et al. Hydrodeoxygenation of guaiacol on Ru catalysts:Influence of TiO2-ZrO2 composite oxide supports[J]. Ind. Eng. Chem. Res., 2017, 56:12070-12079.
|
[30] |
OMOTOSO T, BOONYASUWAT S, CROSSLEY S P. Understanding the role of TiO2 crystal structure on the enhanced activity and stability of Ru/TiO2 catalysts for the conversion of lignin-derived oxygenates[J]. Green Chem., 2014, 16:645-652.
|
[31] |
FTOUNI J, MURILLO A M, GORYACHEV A E, et al. ZrO2 is preferred over TiO2 as support for the Ru-catalyzed hydrogenation of levulinic acid to γ-valerolactone[J]. ACS Catal., 2016, 6:5462-5472.
|
[32] |
DI L, WU G J, DAI W L, et al. Ru/TiO2 for the preferential oxidation of CO in H2-rich stream:effects of catalyst pre-treatments and reconstruction of Ru sites[J]. Fuel, 2015, 143:318-326.
|
[33] |
SAYAN S, SUZER S, DO U. XPS and in-situ IR investigation of Ru/SiO2 catalyst[J]. J. Mol. Struct., 1997, 410/411:111-114.
|
[34] |
NOZAWA T, MIZUKOSHI Y, YOSHIDA A, et al. Aqueous phase reforming of ethanol and acetic acid over TiO2 supported Ru catalysts[J]. Appl. Phys. B, 2014, 146:221-226.
|
[35] |
KUNDAKOVIC L, FLYTZANI-STEPHANOPOULOS M. Reduction characteristics of copper oxide in cerium and zirconium oxide systems[J]. Applied Catalysis A:General, 1998, 171:13-29.
|
[36] |
RITZKOPF I, VUKOJEVIC'S, WEIDENTHALER C, et al. Decreased CO production in methanol steam reforming over Cu/ZrO2 catalysts prepared by the microemulsion technique[J]. Applied Catalysis A:General, 2006, 302:215-223.
|
[37] |
ROSENBAUM J, VERSACE D L, ABBAD-ANDALLOUSI S, et al. Antibacterial properties of nanostructured Cu-TiO2 surfaces for dental implants[J]. Biomater. Sci., 2017, 5:455-462.
|
[38] |
YIN M, WU C K, LOU Y, et al. Copper oxide nanocrystals[J]. J. Am. Chem. Soc., 2005, 127(26):9506-9511.
|
[39] |
ZHANG H, ZHENG Z J, MA C J, et al. Tuning surface properties and catalytic performances of Pt-Ru bimetallic nanoparticles by thermal treatment[J]. ChemCatChem, 2015, 7(2):245-249.
|
[40] |
TAUSTER S J, FUNG S C, GARTEN R L. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide[J]. J. Am. Chem. Soc., 1978, 100(1):170-175.
|