CIESC Journal ›› 2018, Vol. 69 ›› Issue (9): 3869-3878.DOI: 10.11949/j.issn.0438-1157.20180186
Previous Articles Next Articles
GENG Lili1, YANG Kaixu2, ZHANG Nuowei2, CHEN Binghui1,2
Received:
2018-02-09
Revised:
2018-06-18
Online:
2018-09-05
Published:
2018-09-05
Supported by:
supported by the Educational Commission of Xinjiang (XJEDU2016S083) and the Natural Science Foundation of Fujian Province (2015J05031).
耿莉莉1, 杨凯旭2, 张诺伟2, 陈秉辉1,2
通讯作者:
张诺伟, 陈秉辉
基金资助:
新疆维吾尔自治区高校科研计划项目(XJEDU2016S083);福建省自然科学基金项目(2015J05031)。
CLC Number:
GENG Lili, YANG Kaixu, ZHANG Nuowei, CHEN Binghui. Synergetic effect of Ru and Cu on catalytic wet oxidation of ammonia-wastewater[J]. CIESC Journal, 2018, 69(9): 3869-3878.
耿莉莉, 杨凯旭, 张诺伟, 陈秉辉. Ru和Cu协同催化湿式氧化处理氨氮废水[J]. 化工学报, 2018, 69(9): 3869-3878.
[1] | 王泽斌, 马云, 王强. 含氮废水生物处理技术研究现状及发展趋势[J]. 环境科学与管理, 2011, 9:108-112. WANG Z B, MA Y, WANG Q. Advance and trend of biological nitrogen removal technologies in wastewater treatment[J]. Environmental Science and Management, 2011, 9:108-112. |
[2] | LUCK F. Wet air oxidation:past, present and future[J]. Catalysis Today, 1999, 53(1):81-91. |
[3] | LEVEC J, PINTAR A. Catalytic wet-air oxidation processes:a review[J]. Catalysis Today, 2007, 124(3/4):172-184. |
[4] | BHARGAVA S K, TARDIO J, PRASAD J, et al. Wet oxidation and catalytic wet oxidation[J]. Industrial & Engineering Chemistry Research, 2006, 45(4):1221-1258. |
[5] | IMAMURA S. Catalytic and noncatalytic wet oxidation[J]. Industrial & Engineering Chemistry Research, 1999, 38(5):1743-1753. |
[6] | HUNG C M, LOU J C, LIN C H. Removal of ammonia solutions used in catalytic wet oxidation processes[J]. Chemosphere, 2003, 52(6):989-995. |
[7] | WANG Y, SUN W, WEI H, et al. Extended study of ammonia conversion to N2using a Ru/0.2TiZrO4 catalyst via catalytic wet air oxidation[J]. Catal. Sci. Technol., 2016, 6:6144-6151. |
[8] | CAPODAGLIO A G, HLAVINEK P, RABONI M. Physico-chemical technologies for nitrogen removal from wastewaters:a review[J]. Revista Ambiente & Agua, 2015, 10:481-498. |
[9] | QIN J, AIKA K. Catalytic wet air oxidation of ammonia over alumina supported metals[J]. Applied Catalysis B:Environmental, 1998, 16:261-268. |
[10] | BARBIER J, OLIVIERO L, RENARD B, et al. Catalytic wet air oxidation of ammonia over M/CeO2 catalysts in the treatment of nitrogen-containing pollutants[J]. Catalysis Today, 2002, 75:29-34. |
[11] | HIDEKI T, QIN J, AIKA K. Hydrogen-treated active carbon supported palladium catalysts for wet air oxidation of ammonia[J]. Chemistry Letters, 1999, 28(5):377-378. |
[12] | 付迎春. 催化湿式氧化法处理氨氮废水的研究[D]. 南京:南京工业大学, 2004. FU Y C. Study on treatment of ammonia wastewater by catalytic wet air oxidation process[D]. Nanjing:Nanjing University of Technology, 2004. |
[13] | SUTASINEE K N, INAZU K, KOBAYASHI T, et al. Selective wet-air oxidation of diluted aqueous ammonia solutions over supported Ni catalysts[J]. Water Research, 2004, 38:778-782. |
[14] | IMAMURA S, DOI A, ISHIDA S. Wet oxidation of ammonia catalyzed by cerium-based composite oxides[J]. Industrial & Engineering Chemistry Product Research and Development, 1985, 24(1):75-80. |
[15] | INOUE K, NAKAYAMA D, WATANABE Y. Oxidation of dissolved ammonia using various metal-oxide catalysts[J]. Kagaku Kogaku Ronbunshu, 1986, 12(2):222-223. |
[16] | HUNG C M. Catalytic wet oxidation of ammonia solution:activity of the Cu-La-Ce/cordierite composite catalyst[J]. Environmental Engineering Science, 2009, 26(2):351-358. |
[17] | UKROPEC R, KUSTER B F M, SCHOUTEN J C, et al. Low temperature oxidation of ammonia to nitrogen in liquid phase[J]. Applied Catalysis B:Environmental, 1999, 23:45-57. |
[18] | NEUROCK M, VAN SANTEN R, BIEMOLT W, et al. Atomic and molecular oxygen as chemical precursors in the oxidation of ammonia by copper[J]. Journal of the American Chemical Society, 1994, 116:6860-6872. |
[19] | LOUSTEAU C, BESSON M, DESCORME C. Catalytic wet air oxidation of ammonia over supported noble metals[J]. Catalysis Today, 2015, 241:80-85. |
[20] | FU J L, YANG K X, MA C J, et al. Bimetallic Ru-Cu as a highly active, selective and stable catalyst for catalytic wet oxidation of aqueous ammonia to nitrogen[J]. Applied Catalysis B:Environmental, 2016, 184:216-222. |
[21] | 王子丹, Hameed Sohaib, 张诺伟, 等. PdNi/C低温高效催化湿式氧化无害化处理氨氮废水[J]. 厦门大学学报(自然科学版), 2018, 57(1):32-37. WANG Z D, HAMEED S, ZHANG N W, et al. Efficient degrading of ammonia by catalytic wet air oxidation over PdNi/C catalyst under mild condition[J]. Journal of Xiamen University (Natural Science), 2018, 57(1):32-37. |
[22] | CRAVANZOLA S, CESANO F, GAZIANO F, et al. Sulfur-doped TiO2:structure and surface properties[J]. Catalysts, 2017, 7:214-225. |
[23] | TAN T H, SCOTT J, NG Y H, et al. Understanding plasmon and band gap photoexcitation effects on the thermal-catalytic oxidation of ethanol by TiO2-supported gold[J]. ACS Catal., 2016, 6:1870-1879. |
[24] | SALAZAR J B, FALCONE D D, PHAM H N, et al. Selective production of 1, 2-propanediol by hydrogenolysis of glycerol over bimetallic Ru-Cu nanoparticles supported on TiO2[J]. Applied Catalysis A:General, 2014, 482:137-144. |
[25] | REQUIES J, GÜEMEZ M B, IRIONDO A, et al. Biobutanol dehydrogenation to butyraldehyde over Cu, Ru and Ru-Cu supported catalysts. Noble metal addition and different support effects[J]. Catal. Lett., 2012, 142:50-59. |
[26] | BALARAJU M, REKHA V, DEVI B, et al. Surface and structural properties of titania-supported Ru catalysts for hydrogenolysis of glycerol[J]. Applied Catalysis A:General, 2010, 384(1/2):107-114. |
[27] | HAMZAH N, NORDINC N M, NADZRI A H A, et al. Enhanced activity of Ru/TiO2 catalyst using bisupport, bentonite-TiO2 for hydrogenolysis of glycerol in aqueous media[J]. Applied Catalysis A:General, 2012, 419/420:133-141. |
[28] | TADA S, KIKUCHI R, TAKAGAKI A, et al. Effect of metal addition to Ru/TiO2 catalyst on selective CO methanation[J]. Catalysis Today, 2014, 232:16-21. |
[29] | LU M H, DU H, WEI B, et al. Hydrodeoxygenation of guaiacol on Ru catalysts:Influence of TiO2-ZrO2 composite oxide supports[J]. Ind. Eng. Chem. Res., 2017, 56:12070-12079. |
[30] | OMOTOSO T, BOONYASUWAT S, CROSSLEY S P. Understanding the role of TiO2 crystal structure on the enhanced activity and stability of Ru/TiO2 catalysts for the conversion of lignin-derived oxygenates[J]. Green Chem., 2014, 16:645-652. |
[31] | FTOUNI J, MURILLO A M, GORYACHEV A E, et al. ZrO2 is preferred over TiO2 as support for the Ru-catalyzed hydrogenation of levulinic acid to γ-valerolactone[J]. ACS Catal., 2016, 6:5462-5472. |
[32] | DI L, WU G J, DAI W L, et al. Ru/TiO2 for the preferential oxidation of CO in H2-rich stream:effects of catalyst pre-treatments and reconstruction of Ru sites[J]. Fuel, 2015, 143:318-326. |
[33] | SAYAN S, SUZER S, DO U. XPS and in-situ IR investigation of Ru/SiO2 catalyst[J]. J. Mol. Struct., 1997, 410/411:111-114. |
[34] | NOZAWA T, MIZUKOSHI Y, YOSHIDA A, et al. Aqueous phase reforming of ethanol and acetic acid over TiO2 supported Ru catalysts[J]. Appl. Phys. B, 2014, 146:221-226. |
[35] | KUNDAKOVIC L, FLYTZANI-STEPHANOPOULOS M. Reduction characteristics of copper oxide in cerium and zirconium oxide systems[J]. Applied Catalysis A:General, 1998, 171:13-29. |
[36] | RITZKOPF I, VUKOJEVIC'S, WEIDENTHALER C, et al. Decreased CO production in methanol steam reforming over Cu/ZrO2 catalysts prepared by the microemulsion technique[J]. Applied Catalysis A:General, 2006, 302:215-223. |
[37] | ROSENBAUM J, VERSACE D L, ABBAD-ANDALLOUSI S, et al. Antibacterial properties of nanostructured Cu-TiO2 surfaces for dental implants[J]. Biomater. Sci., 2017, 5:455-462. |
[38] | YIN M, WU C K, LOU Y, et al. Copper oxide nanocrystals[J]. J. Am. Chem. Soc., 2005, 127(26):9506-9511. |
[39] | ZHANG H, ZHENG Z J, MA C J, et al. Tuning surface properties and catalytic performances of Pt-Ru bimetallic nanoparticles by thermal treatment[J]. ChemCatChem, 2015, 7(2):245-249. |
[40] | TAUSTER S J, FUNG S C, GARTEN R L. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide[J]. J. Am. Chem. Soc., 1978, 100(1):170-175. |
[1] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[2] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[3] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[4] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[5] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[6] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[7] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[8] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[9] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[10] | Qin YANG, Chuanjian QIN, Mingzi LI, Wenjing YANG, Weijie ZHAO, Hu LIU. Fabrication and properties of dual shape memory MXene based hydrogels for flexible sensor [J]. CIESC Journal, 2023, 74(6): 2699-2707. |
[11] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[12] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[13] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[14] | Zijian WANG, Ming KE, Jiahan LI, Shuting LI, Jinru SUN, Yanbing TONG, Zhiping ZHAO, Jiaying LIU, Lu REN. Progress in preparation and application of short b-axis ZSM-5 molecular sieve [J]. CIESC Journal, 2023, 74(4): 1457-1473. |
[15] | Tianhao BAI, Xiaowen WANG, Mengzi YANG, Xinwei DUAN, Jie MI, Mengmeng WU. Study on release and inhibition behavior of COS during high-temperature gas desulfurization process using Zn-based oxide derived from hydrotalcite [J]. CIESC Journal, 2023, 74(4): 1772-1780. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 831
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 620
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||