CIESC Journal ›› 2019, Vol. 70 ›› Issue (1): 290-297.DOI: 10.11949/j.issn.0438-1157.20180646
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Sunxi ZHOU1,2(),Xuelai ZHANG1(),Sheng LIU2,Qiyang CHEN1,Xiaofeng XU1,Yinghui WANG1
Received:
2018-06-12
Revised:
2018-10-08
Online:
2019-01-05
Published:
2019-01-05
Contact:
Xuelai ZHANG
周孙希1,2(),章学来1(),刘升2,陈启杨1,徐笑锋1,王迎辉1
通讯作者:
章学来
作者简介:
周孙希(1994—),男,硕士研究生,<email>1373988947@qq.com</email>|章学来(1964—),男,博士,教授,<email>xlzhang@shmtu.edu.cn</email>
基金资助:
CLC Number:
Sunxi ZHOU, Xuelai ZHANG, Sheng LIU, Qiyang CHEN, Xiaofeng XU, Yinghui WANG. Preparation and properties of decyl alcohol-palmitic acid/expanded graphite low temperature composite phase change material[J]. CIESC Journal, 2019, 70(1): 290-297.
周孙希, 章学来, 刘升, 陈启杨, 徐笑锋, 王迎辉. 癸醇-棕榈酸/膨胀石墨低温复合相变材料的制备与性能[J]. 化工学报, 2019, 70(1): 290-297.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20180646
Equipment | Model | Accuracy |
---|---|---|
precision electronic balance | MSl05DU | ±0.01 mg |
magnetic stirrer | HJ-6A | — |
cryogenic bath | DC-6515 | ±0.1℃ |
Agilent data acquisition instrument | 34972A | ±0.01℃ |
differential scanning calorimetry(DSC) | DSC200F3 | temperature<0.1℃, enthalpy<0.1% |
hot disk thermal constant analyzer | TPS500 | <2% |
electron microscope scanner(SEM) | KYKY-EM6000 | — |
box resistance furnace | SX2-4-10A | — |
vacuum drying oven | DZF-6020 | — |
Fourier infrared spectrometer | TENSOR37 | — |
high and low temperature alternating box | YSGJW-100C | ±0.5℃ |
Table 1 Experimental instruments
Equipment | Model | Accuracy |
---|---|---|
precision electronic balance | MSl05DU | ±0.01 mg |
magnetic stirrer | HJ-6A | — |
cryogenic bath | DC-6515 | ±0.1℃ |
Agilent data acquisition instrument | 34972A | ±0.01℃ |
differential scanning calorimetry(DSC) | DSC200F3 | temperature<0.1℃, enthalpy<0.1% |
hot disk thermal constant analyzer | TPS500 | <2% |
electron microscope scanner(SEM) | KYKY-EM6000 | — |
box resistance furnace | SX2-4-10A | — |
vacuum drying oven | DZF-6020 | — |
Fourier infrared spectrometer | TENSOR37 | — |
high and low temperature alternating box | YSGJW-100C | ±0.5℃ |
Proportion (DA-PA:EG) | Before heat treatment/g | After heat treatment/g | Mass loss/g | Percentage loss/% |
---|---|---|---|---|
10:1 | 0.40 | 0.398 | 0.002 | 0.50 |
11:1 | 0.40 | 0.398 | 0.002 | 0.50 |
12:1 | 0.40 | 0.398 | 0.002 | 0.50 |
13:1 | 0.40 | 0.397 | 0.003 | 0.75 |
14:1 | 0.40 | 0.396 | 0.004 | 1.00 |
15:1 | 0.40 | 0.396 | 0.004 | 1.00 |
16:1 | 0.40 | 0.374 | 0.026 | 6.50 |
17:1 | 0.40 | 0.372 | 0.028 | 7.00 |
18:1 | 0.40 | 0.358 | 0.042 | 10.5 |
19:1 | 0.40 | 0.351 | 0.049 | 12.25 |
20:1 | 0.40 | 0.343 | 0.057 | 14.25 |
21:1 | 0.40 | 0.326 | 0.074 | 18.50 |
Table 2 Sample quality changes before and after heat treatment in different proportions
Proportion (DA-PA:EG) | Before heat treatment/g | After heat treatment/g | Mass loss/g | Percentage loss/% |
---|---|---|---|---|
10:1 | 0.40 | 0.398 | 0.002 | 0.50 |
11:1 | 0.40 | 0.398 | 0.002 | 0.50 |
12:1 | 0.40 | 0.398 | 0.002 | 0.50 |
13:1 | 0.40 | 0.397 | 0.003 | 0.75 |
14:1 | 0.40 | 0.396 | 0.004 | 1.00 |
15:1 | 0.40 | 0.396 | 0.004 | 1.00 |
16:1 | 0.40 | 0.374 | 0.026 | 6.50 |
17:1 | 0.40 | 0.372 | 0.028 | 7.00 |
18:1 | 0.40 | 0.358 | 0.042 | 10.5 |
19:1 | 0.40 | 0.351 | 0.049 | 12.25 |
20:1 | 0.40 | 0.343 | 0.057 | 14.25 |
21:1 | 0.40 | 0.326 | 0.074 | 18.50 |
1 | 张仁元. 相变材料与相变储能技术[M]. 北京: 科学出版社, 2009: 2. |
ZhangR Y. Phase Change Materials and Phase Change Energy Storage Technology [M].Beijing: Science Press, 2009: 2. | |
2 | HasanM I, BashirH O, ShadhanA O. Experimental investigation of phase change materials for insulation of residential buildings[J]. Sustainable Cities & Society, 2018, 36(10): 42-58. |
3 | LaaouatniA, MartajN, BennacerR, et al. Phase change materials for improving the building thermal inertia[J]. Energy Procedia, 2017, 139(11): 744-749. |
4 | AhmedA, SiddiqueA K, LudwigN, et al. Design and optimization of a hybrid air conditioning system with thermal energy storage using phase change composite[J]. Energy Conversion and Management, 2018, 169(5): 404-418. |
5 | 唐恒博, 武卫东, 苗朋柯, 等. 空调用二元有机相变蓄冷材料的理论预测与研究[J]. 化工新型材料, 2016, 44(3): 121-123. |
TangH B, WuW D, MiaoP K, et al. Theoretical prediction and research of binary organic phase change cold storage materials for air conditioning [J]. New Chemical Materials, 2016, 44(3): 121-123. | |
6 | KazemB, MahdiK, SeyedA K, et al.The experimental appraisement of the effect of energy storage on the performance of solar chimney using phase change material[J]. Solar Energy, 2018, 169(5): 411-423. |
7 | SuD, JiaY, LinY, et al. Maximizing the energy output of a photovoltaic–thermal solar collector incorporating phase change materials[J]. Energy & Buildings, 2017, 153(8): 382-391. |
8 | 章学来, 陈裕丰, 曾涛, 等. 医药冷链物流用相变材料的研制[J]. 制冷与空调, 2017, 17(7): 43-46. |
ZhangX L, ChenY F, ZengT, et al. Development of phase change materials for pharmaceutical cold chain logistics[J]. Refrigeration and Air-conditioning, 2017, 17(7): 43-46. | |
9 | MeloneL, AltomareL, CigadaA, et al. Phase change material cellulosic composites for the cold storage of perishable products: from material preparation to computational evaluation[J]. Applied Energy, 2012, 89(1): 339-346. |
10 | 谭爱龄, 陈璐, 柳建良. 高吸水性树脂复合相变材料的冻融特性[J]. 化工进展, 2011, 30(10): 2262-2265. |
TanA L, ChenL, LiuJ L. Freeze-thaw characteristics of superabsorbent resin composite phase change materials[J]. Chemical Industry and Engineering Progress, 2011, 30(10): 2262-2265. | |
11 | 陈爱英, 汪学英, 曹学增. 相变储能材料的研究进展与应用[J]. 材料导报, 2003, 17(5): 42-44. |
ChenA Y, WangX Y, CaoX Z. Research progress and application of phase change materials for energy storage[J]. Material Review, 2003, 17(5): 42-44. | |
12 | 曾翠华, 张仁元. 无机水合盐相变储热材料的过冷性研究[J]. 能源研究与信息, 2005, 21(1): 44-49. |
ZengC H, ZhangR Y. Study on subcooling property of inorganic hydrated salt phase change thermal storage materials[J]. Energy Research and Information, 2005, 21(1): 44-49. | |
13 | 张奕, 张小松. 有机相变材料储能的研究和进展[J]. 太阳能学报, 2006, 27(7): 725-730. |
ZhangY, ZhangX S. Research and development of organic phase change material energy storage[J]. Chinese Journal of Solar Energy, 2006, 27(7): 725-730. | |
14 | 张爱军, 孙志高, 蔡伟, 等. 二元有机复合相变材料性能实验研究[J]. 化工新型材料, 2016, 44(7): 127-129. |
ZhangA J, SunZ G, CaiW, et al. Experimental study on the properties of binary organic composite phase change materials[J]. New Chemical Materials, 2016, 44(7): 127-129. | |
15 | 蔡伟, 孙志高, 马鸿凯, 等. 月桂酸-十四醇二元复合相变材料的相变特性[J]. 太阳能学报, 2017, 38(9): 2493-2497. |
CaiW, SunZ G, MaH K, et al. Phase transition properties of lauric acid-tetradecanol binary composite phase change materials[J]. Journal of Solar Energy, 2017, 38(9): 2493-2497. | |
16 | 袁艳平, 白力, 牛犇. 脂肪酸二元低共熔混合物相变温度和潜热的理论预测[J]. 材料导报, 2010, 24(2): 111-113. |
YuanY P, BaiL, NiuB. Theoretical prediction of phase transition temperature and latent heat of fatty acid binary eutectic mixtures[J]. Material Review, 2010, 24(2): 111-113. | |
17 | LiM, KaoH, WuZ, et al. Study on preparation and thermal property of binary fatty acid and the binary fatty acids/diatomite composite phase change materials[J]. Applied Energy, 2011, 88(5): 1606-1612. |
18 | ZuoJ, LiW, WengL. Thermal performance of caprylic acid/1-dodecanol eutectic mixture as phase change material (PCM) [J]. Energy & Buildings, 2011, 43(1): 207-210. |
19 | 郭勇, 朱阳倩, 伍乾, 等. 癸酸-肉豆蔻酸相变储热微胶囊的制备与表征[J]. 新型建筑材料, 2017, 44(10): 104-107. |
GuoY, ZhuY Q, WuQ, et al. Preparation and characterization of decanoic acid-myristic acid phase change thermal storage microcapsules[J]. Novel Building Materials, 2017, 44(10): 104-107. | |
20 | GuoJ, XiangH X, WangQ Q, et al. Preparation and properties of polyacrylonitrile fiber/binary of fatty acids composites as phase change materials[J]. Energy Sources, 2013, 35(11): 1064-1072. |
21 | 李玉洋, 章学来, 徐笑锋, 等. 正辛酸-肉豆蔻酸低温相变材料的制备和循环性能[J]. 化工进展, 2018, 37(2): 689-693. |
LiY Y, ZhangX L, XuX F, et al. Preparation and cycling performance of n-octanoic acid-myristic acid low temperature phase change material[J]. Chemical Industry and Engineering Progress, 2018, 37(2): 689-693. | |
22 | 黄艳, 章学来. 十二醇-癸酸-纳米粒子复合相变材料传热性能[J]. 化工学报, 2016, 67(6): 2271-2276. |
HuangY, ZhangX L. Heat transfer performance of dodecyl alcohol-capric acid-nanoparticle composite phase change material [J]. Acta Chimica Sinica, 2016, 67 (6): 2271-2276. | |
23 | 刘臣臻. 相变微胶囊储能过程传热与流动特性研究[D]. 北京: 中国矿业大学, 2017. |
LiuC Z. Study on heat transfer and flow characteristics of phase change microcapsule energy storage process[D]. Beijing: China University of Mining and Technology, 2017. | |
24 | 孙凯, 张步宁, 晏凤梅, 等. 石蜡微胶囊型相变储能材料制备及表征[J]. 化工进展, 2011, 30(12): 2676-2678. |
SunK, ZhangB N, YanF M, et al. Preparation and characterization of paraffin microcapsule phase change energy storage materials[J]. Chemical Industry and Engineering Progress, 2011, 30(12): 2676-2678. | |
25 | 赵长颖, 潘智豪, 王倩, 等. 多孔介质的相变和热化学储热性能[J]. 科学通报, 2016, 61(17): 1897-1915. |
ZhaoC Y, PanZ H, WangQ, et al. Phase transition and thermochemical heat storage properties of porous media[J]. Chinese Science Bulletin, 2016, 61(17): 1897-1915. | |
26 | 胡小冬, 高学农, 李得伦, 等. 石蜡/膨胀石墨定形相变材料的性能[J]. 化工学报, 2013, 64(10): 3831-3837. |
HuX D, GaoX N, LiD L, et al. Properties of paraffin/expanded graphite shaped phase change materials[J]. CIESC Journal, 2013, 64(10): 3831-3837. | |
27 | 李云涛, 晏华, 汪宏涛, 等. 正癸酸-月桂酸-硬脂酸三元低共熔体系/膨胀石墨复合相变材料的制备与表征[J].材料导报, 2017, 31(2): 94-99. |
LiY T, YanH, WangH T, et al. Preparation and characterization of ternary eutectic system/expanded graphite composite phase change materials with n-decanoic acid-lauric acid-stearic acid[J].Materials Review, 2017, 31(2): 94-99. | |
28 | YangY, PangY, LiuY, et al. Preparation and thermal properties of polyethylene glycol/expanded graphite as novel form-stable phase change material for indoor energy saving[J]. Materials Letters, 2018, 216(1): 200-223. |
29 | 翟天尧, 李廷贤, 仵斯, 等. 高导热膨胀石墨/硬脂酸定形相变储能复合材料的制备及储/放热特性[J]. 科学通报, 2018, 63(7): 674-683. |
ZhaiT Y, LiT X, WuS, et al. Preparation and storage/exothermic characteristics of high thermal conductivity expanded graphite/stear stearic phase change energy storage composites[J]. Science Bulletin, 2018, 63(7): 674-683. | |
30 | 张寅平, 苏跃红. (准)共晶系相变材料融点及融解热的理论预测[J]. 中国科学技术大学学报, 1995, 25(4): 474-478. |
ZhangY P, SuY H. Theoretical prediction of melting point and melting heat of eutectic phase change materials[J]. Journal of University of Science and Technology of China, 1995, 25(4): 474-478. | |
31 | 张玉辉, 刘海波, 赵丰东. 探讨用差示扫描量热法(DSC)测量相变材料相变温度和相变焓[J]. 中国建材科技, 2006, 15(4): 35-37. |
ZhangY H, LiuH B, ZhaoF D. Discussion on differential scanning calorimetry (DSC) to measure phase change temperature and phase change of phase change materials[J]. China Building Materials Science and Technology, 2006, 15(4): 35-37. |
[1] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[2] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[3] | Yanpeng WU, Qianlong LIU, Dongmin TIAN, Fengjun CHEN. A review of coupling PCM modules with heat pipes for electronic thermal management [J]. CIESC Journal, 2023, 74(S1): 25-31. |
[4] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[5] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[6] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[7] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[8] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[9] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[10] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[11] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[12] | Ao ZHANG, Yingwu LUO. Low modulus, high elasticity and high peel adhesion acrylate pressure sensitive adhesives [J]. CIESC Journal, 2023, 74(7): 3079-3092. |
[13] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[14] | Haopeng SHI, Dawen ZHONG, Xuexin LIAN, Junfeng ZHANG. Experimental study on the downward-facing surface enhanced boiling heat transfer of multiscale groove-fin structures [J]. CIESC Journal, 2023, 74(7): 2880-2888. |
[15] | Fangzhe SHI, Yunhua GAN. Numerical simulation of start-up characteristics and heat transfer performance of ultra-thin heat pipe [J]. CIESC Journal, 2023, 74(7): 2814-2823. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||