CIESC Journal ›› 2018, Vol. 69 ›› Issue (11): 4566-4576.DOI: 10.11949/j.issn.0438-1157.20180600
Previous Articles Next Articles
FU Taotao1, XU Ziyi1, TAHIR Muhammad Faran1, CUMBULA Armando José1, JIANG Shaokun2, ZHU Chunying1, MA Youguang1
Received:
2018-06-01
Revised:
2018-08-27
Online:
2018-11-05
Published:
2018-11-05
Supported by:
supported by the National Natural Science Foundation of China (91634105, 21776200, 21576186).
付涛涛1, 徐子懿1, Tahir Muhammad Faran1, Cumbula Armando José1, 姜韶堃2, 朱春英1, 马友光1
通讯作者:
付涛涛
基金资助:
国家自然科学基金项目(91634105,21776200,21576186)。
CLC Number:
FU Taotao, XU Ziyi, TAHIR Muhammad Faran, CUMBULA Armando José, JIANG Shaokun, ZHU Chunying, MA Youguang. Progress in breakup dynamics of droplets and bubbles in microchannels[J]. CIESC Journal, 2018, 69(11): 4566-4576.
付涛涛, 徐子懿, Tahir Muhammad Faran, Cumbula Armando José, 姜韶堃, 朱春英, 马友光. 微通道内液滴/气泡破裂动力学分析[J]. 化工学报, 2018, 69(11): 4566-4576.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20180600
[1] | 陈光文, 袁权. 微化工技术[J]. 化工学报, 2003, 54(4):427-439. CHEN G W, YUAN Q. Micro-chemical technology[J]. Journal of Chemical Industry and Engineering(China), 2003, 54(4):427-439. |
[2] | 陈光文, 赵玉潮, 乐军, 等.微化工过程中的传递现象[J]. 化工学报, 2013, 64(1):63-75. CHEN G W, ZHAO Y C, YUE J, et al. Transport phenomena in micro-chemical engineering[J]. CIESC Journal, 2013, 64(1):63-75. |
[3] | 白璐, 付涛涛, 马友光, 等. 并行微通道内气液相分配规律[J]. 化工学报, 2014, 65(1):108-115. BAI L, FU T T, MA Y G, et al. Gas-liquid flow distribution of parallel microchannels[J]. CIESC Journal, 2014, 65(1):108-115. |
[4] | 付涛涛, 马友光, 朱春英. 微通道内气液(液液)二相流的实验研究进展[J]. 化学工程, 2011, 39(1):98-102. FU T T, MA Y G, ZHU C Y. Progress of experimental studies on gas-liquid (liquid-liquid) two phase flow in microchannels[J]. Chemical Engineering (China), 2011, 39(1):98-102. |
[5] | CHRISTOPHER G F, ANNA S L. Microfluidic methods for generating continuous droplet streams[J]. Journal of Physics D:Applied Physics, 2007, 40(19):R319-R336. |
[6] | FU T T, MA Y G, FUNFSCHILLING D. Squeezing-to-dripping transition for bubble formation in a microfluidic T-junction[J]. Chemical Engineering Science, 2010, 65(12):3739-3748. |
[7] | XU J H, DONG P F, ZHAP H. The dynamic effects of surfactants on droplet formation in coaxial microfluidic devices[J]. Langmuir, 2012, 28(25):9250-9258. |
[8] | SARRAZIN F, LOUBIERE K, PRAT L. Experimental and numerical study of droplets hydrodynamics in microchannels[J]. AIChE Journal, 2006, 52(12):4061-4070. |
[9] | KINOSHITA H, KANEDA S, FUJⅡ T. Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV[J]. Lab Chip, 2007, 7(3):338-346. |
[10] | MURADOGLU M, STONE H A. Motion of large bubbles in curved channels[J]. Journal of Fluid Mechanics, 2007, 570(570):455-466. |
[11] | MADDALA J, SRINIVASAN B, BITHI S S. Design of a model-based feedback controller for active sorting and synchronization of droplets in a microfluidic loop[J]. AIChE Journal, 2012, 58(7):2120-2130. |
[12] | MADDALA J, VANAPALLI S A, RENGASWAMY R. Origin of periodic and chaotic dynamics due to drops moving in a microfluidic loop device[J]. Physical Review E, 2014, 89(2):023015. |
[13] | WANG K, LU Y, TOSTADO C P. Coalescences of microdroplets at a cross-shaped microchannel junction without strictly synchronism control[J]. Chemical Engineering Journal, 2013, 227(7):90-96. |
[14] | GU H, DUITS M H, MUGELE F. Droplets formation and merging in two-phase flow microfluidics[J]. International Journal of Molecular Sciences, 2011, 12(4):2572-2597. |
[15] | LINK D R, ANNA S, WEITZ D. Geometrically mediated breakup of drops in microfluidic devices[J]. Physical Review Letters, 2004, 92(5):054503. |
[16] | LINK D R, GRASLAND-MONGRAIN E, DURI A. Electric control of droplets in microfluidic devices[J]. Angewandte Chemie, 2006, 45(16):2556-2560. |
[17] | LESHANSKY A M, PISMEN L M. Breakup of drops in a microfluidic T junction[J]. Physics of Fluids, 2009, 21(2):054503. |
[18] | JULLIEN M C, CHING M J T M, COHEN C. Droplet breakup in microfluidic T-junctions at small capillary numbers[J]. Physics of Fluids, 2009, 21(7):023303. |
[19] | ZHANG Y X, WANG L Q. Nanoliter-droplet breakup in confined T-shaped junctions[J]. Current Nanoscience, 2011, 7(3):471-479. |
[20] | DE MENECH M. Modeling of droplet breakup in a microfluidic T-shaped junction with a phase-field model[J]. Physical Review E, 2006, 73(3):031505. |
[21] | ODY C P, BAROUD C N, DE LANGRE E. Transport of wetting liquid plugs in bifurcating microfluidic channels[J]. Journal of Colloid & Interface Science, 2007, 308(1):231-238. |
[22] | LESHANSKY A M, AFKHAMI S, JULLIEN M C. Obstructed breakup of slender drops in a microfluidic T junction[J]. Physical Review Letters, 2012, 108(26):264502. |
[23] | HOANG D A, PORTELA L M, KLEIJIN C R. Dynamics of droplet breakup in a T-junction[J]. Journal of Fluid Mechanics, 2013, 717(1):R4. |
[24] | CHEN Y P, DENG Z L. Hydrodynamics of a droplet passing through a microfluidic T-junction[J]. Journal of Fluid Mechanics, 2017, 819:401-434. |
[25] | SUN X, ZHU C Y, FU T T, et al. Dynamics of droplet breakup and formation of satellite droplets in a microfluidic T-junction[J]. Chemical Engineering Science, 2018, 188:158-169. |
[26] | MEHDI N, SIVA V. Volume-of-fluid simulations in microfluidic T-junction devices:influence of viscosity ratio on droplet size[J]. Physics of Fluids, 2017, 29 (3):032007. |
[27] | TING T H, YAP F, NGUYEN N T. Thermally mediated breakup of drops in microchannels[J]. Applied Physics Letters, 2006, 89(23):234101. |
[28] | ZHU H W, ZHANG N G, HE R X. Controllable fission of droplets and bubbles by pneumatic valve[J]. Microfluidics and Nanofluidics, 2011, 10(6):1343-1349. |
[29] | VERBRUGGEN B, LEIRS K, PUERS R. Selective DNA extraction with microparticles in segmented flow[J]. Microfluidics and Nanofluidics, 2015, 18(2):293-303. |
[30] | VERBRUGGEN B, TOTH T, CORNAGLIA M. Separation of magnetic microparticles in segmented flow using asymmetric splitting regimes[J]. Microfluidics and Nanofluidics, 2015, 18(1):91-102. |
[31] | VERBRUGGEN B, TOTH T, ATALAY Y T. Design of a flow-controlled asymmetric droplet splitter using computational fluid dynamics[J]. Microfluidics and Nanofluidics, 2013, 15(2):243-252. |
[32] | ENGL W, OHATA K, GUILLOT P. Selection of two-phase flow patterns at a simple junction in microfluidic devices[J]. Physical Review Letters, 2006, 96(13):134505. |
[33] | CARLSON A, DO-QUANG M, AMBERG G. Droplet dynamics in a bifurcating channel[J]. International Journal of Multiphase Flow, 2010, 36(5):397-405. |
[34] | CALDERON A J, FOWLKES J B, BULL J L. Bubble splitting in bifurcating tubes:a model study of cardiovascular gas emboli transport[J]. Journal of Applied Physiology, 2005, 99(2):479-487. |
[35] | YAMADA M, DOI S, MAENAKA H. Hydrodynamic control of droplet division in bifurcating microchannel and its application to particle synthesis[J]. Journal of Colloid & Interface Science, 2008, 321(2):401-407. |
[36] | BAROUD C N, TSIKATA S, HEIL M. The propagation of low-viscosity fingers into fluid-filled branching networks[J]. Journal of Fluid Mechanics, 2005, 546(1):285-294. |
[37] | ENGL W, ROCHE M, COLIN A. Droplet traffic at a simple junction at low capillary numbers[J]. Physical Review Letters, 2005, 95(20):208304. |
[38] | SAMIE M, SALARI A, SHAFⅡ M B. Breakup of microdroplets in asymmetric T junctions[J]. Physical Review E, 2013, 87(5):053003. |
[39] | ZHANG Y, WAMG L. Nanoliter-droplet breakup in confined T-shaped junctions[J]. Current Nanoscience, 2011, 7(3):471-479. |
[40] | BEDRAM A, MOOSAVI A. Droplet breakup in an asymmetric microfluidic T junction[J]. The European Physical Journal E, 2011, 34(8):78. |
[41] | BEDRAM A, DARABI A E, MOOSAVI A. Numerical investigation of an efficient method (T-junction with valve) for producing unequal-size droplets in micro and nano-fluidic systems[J]. Journal of Fluids Engineering, 2015, 137(3):031202. |
[42] | HOANG D A, HARINGA C, PORTELA L M. Design and characterization of bubble-splitting distributor for scaled-out multiphase microreactors[J]. Chemical Engineering Journal, 2014, 236(2):545-554. |
[43] | AL-HOUSSEINY T, HERNANDEZ J, STONE H A. Preferential flow penetration in a network of identical channels[J]. Physics of Fluids, 2014, 26(4):241-271. |
[44] | ZHENG M M, MA Y L, JIN T M, et al. Effects of topological changes in microchannel geometries on the asymmetric breakup of a droplet[J]. Microfluidics and Nanofluidics, 2016, 20(7):1-22. |
[45] | MORITANI T, YAMADA M, SEKI M. Generation of uniform-size droplets by multistep hydrodynamic droplet division in microfluidic circuits[J]. Microfluidics and Nanofluidics, 2011, 11(5):601-610. |
[46] | ADAMSON D N, MUSTAFI D, ZHANG J X. Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices[J]. Lab Chip, 2006, 6(9):1178-1186. |
[47] | LAO K L, WANG J H, LEE G B. A microfluidic platform for formation of double-emulsion droplets[J]. Microfluidics and Nanofluidics, 2009, 7(5):709-719. |
[48] | SONG Y, MANNEVILLE P, BAROUD C N. Local interactions and the global organization of a two-phase flow in a branching tree[J]. Physical Review Letters, 2010, 105(13):134501. |
[49] | BAUDOIN M, SONG Y, MANNEVILLE P. Airway reopening through catastrophic events in a hierarchical network[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(3):859-864. |
[50] | VALASSIS D T, DODDE R E, ESPHUNIYANI B. Microbubble transport through a bifurcating vessel network with pulsatile flow[J]. Biomed Microdevices, 2012, 14(1):131-143. |
[51] | VERTTI-QUINTERO N, SONG Y, MANNEVILLE P. Behavior of liquid plugs at bifurcations in a microfluidic tree network[J]. Biomicrofluidics, 2012, 6(3):034105. |
[52] | HE K, WANG S F, HUANG J Z. The effect of flow pattern on split of two-phase flow through a micro-T-junction[J]. International Journal of Heat and Mass Transfer, 2011, 54(15/16):3587-3593. |
[53] | VILLONE M M, TROFA M, HULSENM A, et al. Numerical design of a T-shaped microfluidic device for deformability-based separation of elastic capsules and soft beads[J]. Physical Review E, 2017, 96:053103. |
[54] | MENETRIER-DEREMBLE L, TABELING P. Droplet breakup in microfluidic junctions of arbitrary angles[J]. Physical Review E, 2006, 74(3):035303. |
[55] | PROTIERE S, BAZANT M Z, WEITZ D. Droplet breakup in flow past an obstacle:a capillary instability due to permeability variations[J]. EPL, 2010, 92(5):54002. |
[56] | SALKIN L, SCHMIT A, COURBIN L. Passive breakups of isolated drops and one-dimensional assemblies of drops in microfluidic geometries:experiments and models[J]. Lab Chip, 2013, 13(15):3022-3032. |
[57] | SALKIN L, COURBIN L, PANIZZA P. Microfluidic breakups of confined droplets against a linear obstacle:the importance of the viscosity contrast[J]. Physical Review E, 2012, 86(3):036317. |
[58] | LEE J, LEE W, SON G. Numerical study of droplet breakup and merging in a microfluidic channel[J]. Journal of Mechanical Science and Technology, 2013, 27(6):1693-1699. |
[59] | LEE W, SON G. Numerical study of obstacle configuration for droplet splitting in a microchannel[J]. Computers & Fluids, 2013, 84(18):351-358. |
[60] | MA Y L, ZHENG M M, WANG J T, et al. Effects of obstacle lengths on the asymmetric breakup of a droplet in a straight microchannel[J]. Chemical Engineering Science, 2018, 179:104-114. |
[61] | FU T T, MA Y G, FUNFSCHILLING D. Dynamics of bubble breakup in a microfluidic T-junction divergence[J]. Chemical Engineering Science, 2011, 66(18):4184-4195. |
[62] | LIU X D, DENG Z L, CHEN Y P, et al. Bubble breakup in a microfluidic T-junction[J]. Science Bulletin, 2016, 61(10):811-824. |
[63] | LU Y T, FU T T, MA Y G. Dynamics of bubble breakup at a T junction[J]. Physical Review E, 2016, 93(2):022802. |
[64] | WU Y N, FU T T, ZHU C Y. Asymmetrical breakup of bubbles at a microfluidic T-junction divergence:feedback effect of bubble collision[J]. Microfluidics and Nanofluidics, 2012, 13(5):723-733. |
[65] | CALDERON A J, ESHPUNIYANI B, FOWLKES J B. A boundary element model of the transport of a semi-infinite bubble through a microvessel bifurcation[J]. Physics of Fluids, 2010, 22(6):299. |
[66] | CHEN X, ZIELINSKI R, GHADIAL S N. Computational analysis of microbubble flows in bifurcating airways:role of gravity, inertia, and surface tension[J]. J. Biomech. Eng., 2014, 136(10):101007. |
[67] | PRAKASH M, GERSHENFLED N. Microfluidic bubble logic[J]. Science, 2007, 315(5813):832-835. |
[68] | WANG X D, ZHU C Y, FU T T. Critical lengths for the transition of bubble breakup in microfluidic T-junctions[J]. Chemical Engineering Science, 2014, 111(8):244-254. |
[69] | FU T T, MA Y G, LI H Z. Hydrodynamic feedback on bubble breakup at a T-junction within an asymmetric loop[J]. AIChE Journal, 2014, 60(5):1920-1929. |
[70] | BRETHERTON F. The motion of long bubbles in tubes[J]. Journal of Fluid Mechanics, 1961, 10(2):166-188. |
[71] | RATULOWSKI J, CHANG H C. Transport of gas bubbles in capillaries[J]. Physics of Fluids A:Fluid Dynamics, 1989, 1(10):1642-1655. |
[72] | WANG X D, ZHU C Y, FU T T. Bubble breakup with permanent obstruction in an asymmetric microfluidic T-junction[J]. AIChE Journal, 2015, 61(3):1081-1091. |
[73] | ESHPUNIYANI B, FOWLKES J B, BULL J L. A bench top experimental model of bubble transport in multiple arteriole bifurcations[J]. International Journal of Heat and Fluid Flow, 2005, 26(6):865-872. |
[74] | 李静海, 胡英, 袁权. 探索介尺度科学: 从新角度审视老问题[J]. 中国科学:化学, 2014, (3):277-281. LI J H, HU Y, YUAN Q. Mesoscience:exploring old problems from a new angle[J]. Scientia Sinica Chimica, 2014, (3):277-281. |
[75] | 杨宁, 李静海. 化学工程中的介尺度科学与虚拟过程工程:分析与展望[J]. 化工学报, 2014, 65(7):2403-2409. YANG N, LI J H. Mesoscience in chemical engineering and virtual process engineering:analysis and perspective[J]. CIESC Journal, 2014, 65(7):2403-2409. |
[1] | Xin WU, Jianying GONG, Long JIN, Yutao WANG, Ruining HUANG. Study on the transportation characteristics of droplets on the aluminium surface under ultrasonic excitation [J]. CIESC Journal, 2023, 74(S1): 104-112. |
[2] | Xiaoqing ZHOU, Chunyu LI, Guang YANG, Aifeng CAI, Jingyi WU. Icing kinetics and mechanism of droplet impinging on supercooled corrugated plates with different curvature [J]. CIESC Journal, 2023, 74(S1): 141-153. |
[3] | Keke SHAO, Mengjie SONG, Zhengyong JIANG, Xuan ZHANG, Long ZHANG, Runmiao GAO, Zekang ZHEN. Experimental study on the formation and distribution of trapped air bubbles in horizontal ice slice [J]. CIESC Journal, 2023, 74(S1): 161-164. |
[4] | Lisen BI, Bin LIU, Hengxiang HU, Tao ZENG, Zhuorui LI, Jianfei SONG, Hanming WU. Molecular dynamics study on evaporation modes of nanodroplets at rough interfaces [J]. CIESC Journal, 2023, 74(S1): 172-178. |
[5] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[6] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[7] | Jiaqi YUAN, Zheng LIU, Rui HUANG, Lefu ZHANG, Denghui HE. Investigation on energy conversion characteristics of vortex pump under bubble inflow [J]. CIESC Journal, 2023, 74(9): 3807-3820. |
[8] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[9] | Linjing YUE, Yihan LIAO, Yuan XUE, Xuejie LI, Yuxing LI, Cuiwei LIU. Study on influence of pit defects on cavitation flow characteristics of throat of thick orifice plates [J]. CIESC Journal, 2023, 74(8): 3292-3308. |
[10] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[11] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[12] | Hai WANG, Hong LIN, Chen WANG, Haojie XU, Lei ZUO, Junfeng WANG. Investigation of enhanced boiling heat transfer on porous structural surfaces by high voltage electric field [J]. CIESC Journal, 2023, 74(7): 2869-2879. |
[13] | Jinming GAO, Yujiao GUO, Chenglin E, Chunxi LU. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood [J]. CIESC Journal, 2023, 74(7): 2957-2966. |
[14] | Xuanzhi HE, Yongqing HE, Guiye WEN, Feng JIAO. Ferrofluid droplet neck self-similar breakup behavior [J]. CIESC Journal, 2023, 74(7): 2889-2897. |
[15] | Jinbo JIANG, Xin PENG, Wenxuan XU, Rixiu MEN, Chang LIU, Xudong PENG. Study on leakage characteristics and parameter influence of pump-out spiral groove oil-gas seal [J]. CIESC Journal, 2023, 74(6): 2538-2554. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||