CIESC Journal ›› 2018, Vol. 69 ›› Issue (11): 4566-4576.DOI: 10.11949/j.issn.0438-1157.20180600

Previous Articles     Next Articles

Progress in breakup dynamics of droplets and bubbles in microchannels

FU Taotao1, XU Ziyi1, TAHIR Muhammad Faran1, CUMBULA Armando José1, JIANG Shaokun2, ZHU Chunying1, MA Youguang1   

  1. 1. State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300372, China;
    2. The 718 th Research Institute of China Shipbuilding Industry Corporation, Handan 056027, Hebei, China
  • Received:2018-06-01 Revised:2018-08-27 Online:2018-11-05 Published:2018-11-05
  • Supported by:

    supported by the National Natural Science Foundation of China (91634105, 21776200, 21576186).

微通道内液滴/气泡破裂动力学分析

付涛涛1, 徐子懿1, Tahir Muhammad Faran1, Cumbula Armando José1, 姜韶堃2, 朱春英1, 马友光1   

  1. 1. 化学工程联合国家重点实验室, 天津大学化工学院, 天津 300072;
    2. 中国船舶重工集团公司第七一八研究所, 河北 邯郸 056027
  • 通讯作者: 付涛涛
  • 基金资助:

    国家自然科学基金项目(91634105,21776200,21576186)。

Abstract:

Micro-chemical engineering and technology is one of the frontiers in modern chemical engineering. The kinetics of droplet and bubble rupture in the microchannel is the basis and difficulty to determine the number of parallel microchannels in the multiphase process. The progress in dynamics of bubble and droplet breakup in microchannels will be summarized from the aspects of flow transition conditions for breakup, interfacial dynamics and size manipulation. The rupture behavior and influencing factors of bubbles and droplets in symmetrical microchannels, asymmetrical microchannels, microfluidic device with multi-level branching channels, bypass microchannels and microchannel with obstructed structure are discussed. The shortcomings of the related researches on bubble and droplet breakup behavior at microscale are pointed out, and the development direction in this field for the future is pointed out.

Key words: droplet, bubble, gas-liquid flow, microchannels, microfluidics

摘要:

微化学工程与技术是现代化学工程学科的前沿领域。微通道内液滴及气泡破裂动力学是决定多相过程并行微通道数目放大的基础与难点。破裂流型转换条件、界面动力学和尺寸调控等三方面是微通道内液滴与气泡破裂动力学的主要研究对象。讨论了对称微通道、非对称微通道、多级微通道、旁路微通道、含有障碍物的微通道内气泡和液滴破裂行为及影响因素,指出了目前微尺度下气泡与液滴破裂行为相关研究工作存在的不足,并对该领域未来的发展进行了展望。

关键词: 液滴, 气泡, 气液两相流, 微通道, 微流体学

CLC Number: