CIESC Journal ›› 2019, Vol. 70 ›› Issue (1): 72-82.DOI: 10.11949/j.issn.0438-1157.20180368
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Jingyan LI(),Zhongliang LIU(),Yu ZHOU,Yanxia LI
Received:
2018-04-03
Revised:
2018-11-07
Online:
2019-01-05
Published:
2019-01-05
Contact:
Zhongliang LIU
通讯作者:
刘中良
作者简介:
李静岩(1992—),男,硕士研究生,<email>lijingyan@emails.bjut.edu.cn</email>|刘中良(1958—),男,博士,教授,<email>liuzhl@bjut.edu.cn</email>
CLC Number:
Jingyan LI, Zhongliang LIU, Yu ZHOU, Yanxia LI. Study of thermal-hydrologic-mechanical numerical simulation model on CO2 plume geothermal system[J]. CIESC Journal, 2019, 70(1): 72-82.
李静岩, 刘中良, 周宇, 李艳霞. CO2羽流地热系统热开采过程热流固耦合模型及数值模拟研究[J]. 化工学报, 2019, 70(1): 72-82.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20180368
参数 | 热储 | 盖岩和基岩 |
---|---|---|
厚度/m | 100 | 500 |
孔隙率 | 0.03 | 0 |
渗透率/m2 | 5 × 10-14 | N/A |
密度/(kg·m-3) | 2600 | 2600 |
比热容/(J·(kg·K)-1) | 1000 | 1000 |
热导率/(W·(m·K)-1) | 2.5 | 2.5 |
杨氏模量/GPa | 17 | 17 |
泊松比 | 0.25 | 0.25 |
Biot系数 | 0.47 | 0.47 |
热膨胀系数/K-1 | 1×10-5 | 1 × 10-5 |
残余水饱和度 | 0.3 | N/A |
残余气饱和度 | 0.05 | N/A |
Brooks-Corey系数 | 2 | N/A |
孔隙注入压力/kPa | 20 | N/A |
Table 1 Hydrological and physical property parameter of rock stratum
参数 | 热储 | 盖岩和基岩 |
---|---|---|
厚度/m | 100 | 500 |
孔隙率 | 0.03 | 0 |
渗透率/m2 | 5 × 10-14 | N/A |
密度/(kg·m-3) | 2600 | 2600 |
比热容/(J·(kg·K)-1) | 1000 | 1000 |
热导率/(W·(m·K)-1) | 2.5 | 2.5 |
杨氏模量/GPa | 17 | 17 |
泊松比 | 0.25 | 0.25 |
Biot系数 | 0.47 | 0.47 |
热膨胀系数/K-1 | 1×10-5 | 1 × 10-5 |
残余水饱和度 | 0.3 | N/A |
残余气饱和度 | 0.05 | N/A |
Brooks-Corey系数 | 2 | N/A |
孔隙注入压力/kPa | 20 | N/A |
1 | HollowayS. Storage of fossil fuel-derived carbon dioxide beneath the surface of the Earth[J]. Annual Review Energy Environment, 2001, 26: 145-166. |
2 | WestJ M, PearceJ, BenthamM, et al. Issue profile: environmental issues and the geological storage of CO2[J]. European Environment, 2005, 15: 250-259. |
3 | GentzisT. Subsurface sequestration of carbon dioxide—an overview from an Alberta (Canada) perspective[J]. International Journal of Coal Geology, 2000, 43:287-305. |
4 | GoughC. State of the art in carbon dioxide capture and storage in the UK: an experts review[J]. International Journal of Greenhouse Gas Control, 2008, 2:155-168. |
5 | HollowayS. Underground sequestration of carbon dioxide—a viable greenhouse gas mitigation option[J]. Energy, 2005, 30:2318-2333. |
6 | MetzB, DavidsonO R, BoschP R, et al. Contribution of working group Ⅲ to the fourth assessment report of the intergovernmental panel on climate change[R]. Cambridge: Cambridge University Press, 2007. |
7 | BrownD. A hot dry rock geothermal energy concept utilizing supercritical CO2 instead of water[C]//Proceedings of the Twenty-fifth Workshop on Geothermal Reservoir Engineering. Stanford,2000: 233-238. |
8 | PruessK. Enhanced geothermal systems (EGS) using CO2 as working fluid—a novel approach for generating renewable energy with simultaneous sequestration of carbon[J]. Geothermics, 2006, 35: 351-367. |
9 | PruessK. Enhanced geothermal systems (EGS) comparing water with CO2 as heat transmission fluids[R]. Berkeley: Lawrence Berkeley National Laboratory, 2007. |
10 | PruessK. On the feasibility of using supercritical CO2 as heat transmission fluid in an engineered hot dry rock geothermal system[C]//Proceedings of the Thirty-first Workshop on Geothermal Reservoir Engineering. Stanford, 2006. |
11 | PruessK. On production behavior of enhanced geothermal systems with CO2 as working fluid[J]. Energy Conversion and Management, 2008, 49(6): 1446-1454. |
12 | MajerE L, BariaR, StarkM, et al. Induced seismicity associated with enhanced geothermal systems[J]. Geothermics, 2007, 36: 185-222. |
13 | RandolphaJ B, SaarM O. Coupling geothermal energy capture with carbon dioxide sequestration in naturally permeable, porous geologic formations: a comparison with enhanced geothermal systems[J]. GRC Trans., 2010, 34:433-438. |
14 | RandolphaJ B, SaarM O. Combining geothermal energy capture with geologic carbon dioxide sequestration [J]. Geophysical Research Letters, 2011, 38: L10401. |
15 | RandolphaJ B, SaarM O. Coupling carbon dioxide sequestration with geothermal energy capture in naturally permeable, porous geologic formations: implications for CO2 sequestration[J]. Energy Procedia, 2011, 4: 2206-2213. |
16 | ZhangL, EzekielJ, LiD, et al. Potential assessment of CO2 injection for heat mining and geological storage in geothermal reservoirs of China[J]. Applied Energy, 2014, 122: 237-246. |
17 | XuT, FengG, ShiY. On fluid-rock chemical interaction in CO2-based geothermal systems[J]. Journal of Geochemical Exploration, 2014, 144: 179-193. |
18 | GhassemiA, ZhouX. A three-dimensional thermo-poroelastic model for fracture response to injection/extraction in enhanced geothermal systems [J]. Geothermics, 2011, 40(1): 39-49. |
19 | KohJ, RoshanH, RahmanS S. A numerical study on the long term thermo-poroelastic effects of cold water injection into naturally fractured geothermal reservoirs [J]. Computers and Geotechnics, 2011, 38(5): 669-682. |
20 | JingY, JingZ, Willis-RichardsJ, et al. A simple 3-D thermoelastic model for assessment of the long-term performance of the Hijiori deep geothermal reservoir [J]. Journal of Volcanology & Geothermal Research, 2014, 269: 14-22. |
21 | 曹文炅, 黄文博, 蒋方明. 地下热流固耦合对EGS热开采的影响[J]. 新能源进展, 2015, 3(6): 444-451. |
CaoW J, HuangW B, JiangF M. The thermal-hydraulic-mechanical coupling effects on heat extraction of enhanced geothermal systems [J]. Journal of Circuits and Systems, 2015, 3(6): 444-451. | |
22 | HicksT W, PineR J, Willis-RichardsJ, et al. A hydro-thermo-mechanical numerical model for HDR geothermal reservoir evaluation [J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1996, 33(5): 499-511. |
23 | TaronJ, ElsworthD. Thermal–hydrologic–mechanical–chemical processes in the evolution of engineered geothermal reservoirs [J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(5): 855-864. |
24 | TaronJ, ElsworthD, MinK B. Numerical simulation of thermal-hydrologic-mechanical- chemical processes in deformable, fractured porous media [J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(5): 842-854. |
25 | McDermottC I, RandriamanjatosoaA R L, TenzerH, et al. Simulation of heat extraction from crystalline rocks: the influence of coupled processes on differential reservoir cooling [J]. Geothermics, 2006, 35(3): 321-344. |
26 | 李静岩, 刘中良, 周宇, 等. 热储上下岩层热补偿作用对CO2羽流地热系统性能的影响[J]. 化工学报, 2017, 68(12): 4526-4536. |
LiJ Y, LiuZ L, ZhouY, et al. Influence of thermal compensation of geothermal reservoir rock formation on CO2 plume geothermal system performance [J]. CIESC Journal, 2017, 68(12): 4526-4536. | |
27 | FagerlundF F, NiemiA, OdenM. Comparison of relative permeability-fluid saturation-capillary pressure relations in the modelling of non-aqueous phase liquid infiltration in variably saturated,layered media[J]. Advances in Water Resources, 2006, 29(11): 1705-1730. |
28 | 李培超, 孔祥言, 卢德唐. 饱和多孔介质流固耦合渗流的数学模型[J]. 水动力学研究与进展, 2003, 18(4): 419-426 |
LiP C, KongX Y, LuD T. Mathematical modeling of flow in saturated porous media on account of fluid-solid coupling effect[J]. Journal of Hydrodynamics, 2003, 18(4): 419-426. | |
29 | 戴永浩, 陈卫忠, 伍国军, 等. 非饱和岩体弹塑性损伤模型研究与应用[J]. 岩石力学与工程学报, 2008, 27(4): 728-735. |
DaiY H, ChenW Z, WuG J, et al. Study on elastoplastic damage model of unsaturated rock mass and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(4): 728-735. | |
30 | 魏铭聪, 杨冰, 许天福, 等. 二氧化碳羽流地热系统中井间距和储层渗透率对热提取率的影响:以松辽盆地为例[J]. 地质科技情报, 2015, 34(2): 188-193. |
WeiM C, YangB, XuT F, et al. Effects of well spacing and reservoir permeability on heat extraction in CO2 plume geothermal system: a case study of Songliao Basin[J]. Geological Science and Technology Information, 2015, 34(2): 188-193. | |
31 | 杨艳林, 靖晶, 王福刚, 等. CO2增强型地热系统中的井网间距优化研究[J]. 太阳能学报, 2014, (7): 1130-1137. |
YangY L, JingJ, WangF G, et al. Optimal design of well spacing on CO2 enhanced geothermal[J]. Acta Energiae Solaris Sinica, 2014, (7):1130-1137. | |
32 | 张俊虎, 刘君. 煤层气井网布置优化设计的探讨[J]. 科技情报开发与经济, 2008, (10):210-212. |
ZhangJ H, LiuJ. Probe into the optimal design of coal-bed methane well network[J]. Sci-tech Information Development & Economy, 2008, (10):210-212. |
[1] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[4] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[5] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[6] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[7] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[8] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[9] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[10] | Xiaosong CHENG, Yonggao YIN, Chunwen CHE. Performance comparison of different working pairs on a liquid desiccant dehumidification system with vacuum regeneration [J]. CIESC Journal, 2023, 74(8): 3494-3501. |
[11] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[12] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[13] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[14] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[15] | Kexin HUANG, Tong LI, Anqi LI, Mei LIN. Mode decomposition of flow field in T-junction with rotating impeller [J]. CIESC Journal, 2023, 74(7): 2848-2857. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||