CIESC Journal ›› 2019, Vol. 70 ›› Issue (4): 1522-1531.DOI: 10.11949/j.issn.0438-1157.20181218
• Energy and environmental engineering • Previous Articles Next Articles
Wei FENG(),Hongfeng GAO,Gui WANG,Langlang WU,Jingqin XU,Zhuangmei LI,Ping LI,Hongcun BAI(),Qingjie GUO
Received:
2018-10-17
Revised:
2018-12-11
Online:
2019-04-05
Published:
2019-04-05
Contact:
Hongcun BAI
冯炜(),高红凤,王贵,吴浪浪,许靖钦,李壮楣,李平,白红存(),郭庆杰
通讯作者:
白红存
作者简介:
<named-content content-type="corresp-name">冯炜</named-content>(1994—),女,硕士研究生,<email>1812939016@qq.com</email>|白红存(1985—),男,博士,副研究员,<email>hongcunbai@nxu.edu.cn</email>;<email>hongcunbai@gmail.com</email>
基金资助:
CLC Number:
Wei FENG, Hongfeng GAO, Gui WANG, Langlang WU, Jingqin XU, Zhuangmei LI, Ping LI, Hongcun BAI, Qingjie GUO. Molecular model and pyrolysis simulation of Zaoquan coal[J]. CIESC Journal, 2019, 70(4): 1522-1531.
冯炜, 高红凤, 王贵, 吴浪浪, 许靖钦, 李壮楣, 李平, 白红存, 郭庆杰. 枣泉煤分子模型构建及热解的分子模拟[J]. 化工学报, 2019, 70(4): 1522-1531.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181218
Proximate analysis/% | Ultimate analysis/% | Content/%(mass) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mad | Aad | Vdaf | Cdaf | Hdaf | Odaf | Ndaf | Sdaf | Vitrinite | Exinite | Inertinite |
6.58 | 2.24 | 25.49 | 72.81 | 3.85 | 20.31 | 0.83 | 0.35 | 29.00 | 0.00 | 71.00 |
Table 1 Physicochemical properties of coal sample
Proximate analysis/% | Ultimate analysis/% | Content/%(mass) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mad | Aad | Vdaf | Cdaf | Hdaf | Odaf | Ndaf | Sdaf | Vitrinite | Exinite | Inertinite |
6.58 | 2.24 | 25.49 | 72.81 | 3.85 | 20.31 | 0.83 | 0.35 | 29.00 | 0.00 | 71.00 |
H/C | O/C | N/C | S/C |
---|---|---|---|
0.63 | 0.21 | 0.01 | 0.00 |
Table 2 Atomic ratio of coal sample
H/C | O/C | N/C | S/C |
---|---|---|---|
0.63 | 0.21 | 0.01 | 0.00 |
Sample | fa | fa C | fa ' | fa N | fa H | fa P | fa S | fa B | fal | fal * | fal H | fal O |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ZQ | 73.84% | 3.37% | 70.47% | 29.75% | 40.72% | 7.73% | 6.48% | 15.54% | 26.16% | 10.44% | 9.98% | 5.74% |
Table 3 Percentage of structural parameters of coal sample
Sample | fa | fa C | fa ' | fa N | fa H | fa P | fa S | fa B | fal | fal * | fal H | fal O |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ZQ | 73.84% | 3.37% | 70.47% | 29.75% | 40.72% | 7.73% | 6.48% | 15.54% | 26.16% | 10.44% | 9.98% | 5.74% |
Elemental peak | Functionality | Binding energy/eV | Molar content/% |
---|---|---|---|
C 1s | C—C, C—H | 284.43 | 38.14 |
C—O | 285.67 | 36.50 | |
C | 286.79 | 18.97 | |
COO— | 289.75 | 6.39 | |
O 1s | inorg oxygen | 530.58 | 2.93 |
C | 531.84 | 24.07 | |
C—O - | 533.06 | 58.84 | |
COO - | 534.60 | 9.75 | |
adsorbed oxygen | 536.04 | 4.41 | |
N 1s | pyridinic nitrogen | 399.10 | 23.00 |
pyrrolic nitrogen | 400.37 | 39.12 | |
quatemary nitrogen | 401.48 | 24.72 | |
oxidized nitrogen | 403.32 | 13.16 |
Table 4 XPS C 1s,O 1s,N 1s data of coal sample
Elemental peak | Functionality | Binding energy/eV | Molar content/% |
---|---|---|---|
C 1s | C—C, C—H | 284.43 | 38.14 |
C—O | 285.67 | 36.50 | |
C | 286.79 | 18.97 | |
COO— | 289.75 | 6.39 | |
O 1s | inorg oxygen | 530.58 | 2.93 |
C | 531.84 | 24.07 | |
C—O - | 533.06 | 58.84 | |
COO - | 534.60 | 9.75 | |
adsorbed oxygen | 536.04 | 4.41 | |
N 1s | pyridinic nitrogen | 399.10 | 23.00 |
pyrrolic nitrogen | 400.37 | 39.12 | |
quatemary nitrogen | 401.48 | 24.72 | |
oxidized nitrogen | 403.32 | 13.16 |
Path | Formation reaction |
---|---|
1 | |
2 | |
3 | |
Table 5 Formation mechanism of CO2 in coal pyrolysis simulation
Path | Formation reaction |
---|---|
1 | |
2 | |
3 | |
1 | Lei Z , Yang D , Zhang Y H , et al . Constructions of coal and char molecular models based on the molecular simulation technology[J]. Journal of Fuel Chemistry & Technology, 2017, 45(7): 769-779. |
2 | Xie K C . Structure and Reactivity of Coal [M]. New York: Springer-Verlag Press, 2015: 1-27. |
3 | Mathews J P , Chaffee A L . The molecular representations of coal— a review[J]. Fuel, 2012, 96(7): 1-14. |
4 | Carlson G A . Computer simulation of the molecular structure of bituminous coal[J]. Energy & Fuels, 1992, 6(6): 771-778. |
5 | Zhang Z , Kang Q , Wei S , et al . Large scale molecular model construction of Xishan bituminous coal[J]. Energy & Fuels, 2017, 31: 1310-1317. |
6 | Mathews J P , Sharma A . The structural alignment of coal and the analogous case of Argonne Upper Freeport coal[J]. Fuel, 2012, 95(1): 19-24. |
7 | 相建华, 曾凡桂, 李彬, 等 . 成庄无烟煤大分子结构模型及其分子模拟[J]. 燃料化学学报, 2013, 41(4): 391-399. |
Xiang J H, Zeng F G, Li B, et al Construction of macromolecular structural model of anthracite from Chengzhuang coal mine and its molecular simulation[J]. Journal of Chemistry and Technology, 2013, 41(4): 391-399. | |
8 | Behar F , Hatcher P G . Artificial coalification of a fossil wood from brown coal by confined system pyrolysis[J]. Fuel & Energy Abstracts, 1996, 37(3): 984-994. |
9 | Salmon E , van Duin Act, Lorant F , et al . Early maturation processes in coal (2): Reactive dynamics simulations using the ReaxFF reactive force field on Morwell Brown coal structures[J]. Organic Geochemistry, 2009, 40(12): 1195-1209. |
10 | Heek K H V , Hodek W . Structure and pyrolysis behaviour of different coals and relevant model substances[J]. Fuel, 1994, 73(6): 886-896. |
11 | Mushtaq F , Mat R , Ani F N . A review on microwave assisted pyrolysis of coal and biomass for fuel production[J]. Renewable & Sustainable Energy Reviews, 2014, 39(6): 555-574. |
12 | Abdelsayed V , Shekhawat D , Smith M W , et al . Microwave-assisted pyrolysis of Mississippi coal: a comparative study with conventional pyrolysis[J]. Fuel, 2018, 217: 656-667. |
13 | Gao S , Zhai L , Qin Y , et al . Investigation into the cleavage of chemical bonds induced by CO2 and its mechanism during the pressurized pyrolysis of coal[J]. Energy & Fuels, 2018, 32(3): 3243-3253. |
14 | 陈兆辉, 高士秋, 许光文 . 煤热解过程分析与工艺调控方法[J]. 化工学报, 2017, 68(10): 3693-3707. |
Chen Z H , Gao S Q , Xu G W . Analysis and control methods of coal pyrolysis process[J]. CIESC Journal, 2017, 68(10): 3693-3707. | |
15 | van Duin Act, Dasgupta S , Lorant F , et al . ReaxFF: a reactive force field for hydrocarbons[J]. Journal of Physical Chemistry A, 2001, 105(41): 9396-9409. |
16 | Salmon E , van Duin Act, Lorant F , et al . Thermal decomposition process in algaenan of Botryococcus braunii race L. (2): Molecular dynamics simulations using the ReaxFF reactive force field[J]. Organic Geochemistry, 2009, 40(3): 416-427. |
17 | Wang H , Feng Y , Zhang X , et al . Study of coal hydropyrolysis and desulfurization by ReaxFF molecular dynamics simulation[J]. Fuel, 2015, 145: 241-248. |
18 | Wang J P , Li G Y , Guo R , et al . Theoretical and experimental insight into coal structure: establishing a chemical model for Yuzhou lignite[J]. Energy & Fuels, 2016, 31(1): 124-132. |
19 | Zhan J H , Wu R , Liu X , et al . Preliminary understanding of initial reaction process for subbituminous coal pyrolysis with molecular dynamics simulation[J]. Fuel, 2014, 134(9): 283-292. |
20 | Hong D , Guo X . Molecular dynamics simulations of Zhundong coal pyrolysis using reactive force field[J]. Fuel, 2017, 210: 58-66. |
21 | Li W , Zhu Y , Chen S , et al . Research on the structural characteristics of vitrinite in different coal ranks[J]. Fuel, 2013, 107(9): 647-652. |
22 | 朱学栋, 朱子彬, 韩崇家, 等 . 煤中含氧官能团的红外光谱定量分析[J]. 燃料化学学报, 1999, (4): 335-339. |
Zhu X D , Zhu Z B , Han C J , et al . Quantitative determination of oxygen containing functional groups in coal by FTIR spectroscopy[J]. Journal of Fuel Chemistry and Technology, 1999, (4): 335-339. | |
23 | Hayashi J , Takahashi H , Doi S , et al . Reactions in brown coal pyrolysis responsible for heating rate effect on tar yield[J]. Energy & Fuels, 2000, 14(2): 400-408. |
24 | Yan G C , Zhang Z Q , Yan K F . Reactive molecular dynamics simulations of the initial stage of brown coal oxidation at high temperatures[J]. Molecular Physics, 2012, 111(1): 147-156. |
25 | Chen B , Diao Z J , Zhao Y L , et al . A ReaxFF molecular dynamics (MD) simulation for the hydrogenation reaction with coal related model compounds[J]. Fuel, 2015, 154(5): 114-122. |
26 | Bhoi S , Banerjee T , Mohanty K . Molecular dynamic simulation of spontaneous combustion and pyrolysis of brown coal using ReaxFF[J]. Fuel, 2014, 136(6): 326-333. |
27 | Zhou Z , Guo L , Chen L , et al . Study of pyrolysis of brown coal and gasification of coal-water slurry using the ReaxFF reactive force field[J]. International Journal of Energy Research, 2018, 42(7): 2465-2480. |
28 | 刘振宇 . 煤化学的前沿与挑战: 结构与反应[J]. 中国科学: 化学, 2014, 44(9): 1431-1438. |
Liu Z Y . Advancement in coal chemistry: structure and reactivity[J]. Scientia Sinica Chimica, 2014, 44(9): 1431-1438. | |
29 | 张小盟, 李宁煜, 高文青 . 宁夏煤炭利用效率的影响因素分析[J]. 煤炭加工与综合利用, 2017, (3): 59-65. |
Zhang X M , Li N Y , Gao W Q . Analysis on the factors affecting the utilization efficiency of coal in Ningxia[J]. Coal Processing and Comprehensive Utilization, 2017, (3): 59-65. | |
30 | 李壮楣, 王艳美, 李平, 等 . 宁东红石湾煤大分子模型构建及量子化学计算[J]. 化工学报, 2018, 69(5): 2208-2216. |
Li Z M , Wang Y M , Li P , et al . Macromolecular model construction and quantum chemical calculation of Ningdong Hongshiwan coal[J]. CIESC Journal, 2018, 69(5): 2208-2216. | |
31 | Zhao Y , Truhlar D G . The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals[J]. Theor. Chem. Acc., 2008, 120: 215-241. |
32 | Weismiller M R , van Duin Act, Lee J , et al . ReaxFF reactive force field development and applications for molecular dynamics simulations of ammonia borane dehydrogenation and combustion[J]. Journal of Physical Chemistry A, 2010, 114: 5485-5492. |
33 | Zheng M , Li X , Liu J , et al . Pyrolysis of Liulin coal simulated by GPU-based ReaxFF MD with cheminformatics analysis[J]. Energy & Fuels, 2014, 28(1): 522–534. |
34 | 张莉 . 五牧场11号煤结构模型构建及其超分子特征[D]. 太原: 太原理工大学, 2013. |
Zhang L . Molecular structure model building and supermolecule characteristic of Wumuchang No.11 coal[D]. Taiyuan: Taiyuan University of Technology, 2013. | |
35 | 马伦, 陆大荣, 梁汉东, 等 . 神华长焰煤大分子结构特征的研究[J]. 燃料化学学报, 2013, 41(5): 513-522. |
Ma L , Lu D R , Liang H D , et al . Preliminary study on macromolecular structure characteristics of Shenhua long flame coal[J]. Journal of Fuel Chemistry & Technology, 2013, 41(5): 513-522. | |
36 | Zheng M , Li X , Nie F , et al . Investigation of overall pyrolysis stages for Liulin bituminous coal by large-scale ReaxFF molecular dynamics[J]. Energy & Fuels, 2017, 31(4): 3675−3683. |
37 | Li W , Zhu Y M , Wang G , et al . Molecular model and ReaxFF molecular dynamics simulation of coal vitrinite pyrolysis[J]. Journal of Molecular Modeling, 2015, 21(8): 188-200. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||