CIESC Journal ›› 2019, Vol. 70 ›› Issue (4): 1532-1541.DOI: 10.11949/j.issn.0438-1157.20180928
• Energy and environmental engineering • Previous Articles Next Articles
Peng LI(),Zhonghe HAN(),Xiaoqiang JIA,Zhongkai MEI,Xu HAN
Received:
2018-08-15
Revised:
2019-01-04
Online:
2019-04-05
Published:
2019-04-05
Contact:
Zhonghe HAN
通讯作者:
韩中合
作者简介:
<named-content content-type="corresp-name">李鹏</named-content>(1991—),男,博士研究生,<email>pengli@ncepu.edu.cn</email>|韩中合(1964—),男,博士,教授,<email>hanzhonghe@ncepu.edu.cn</email>
基金资助:
CLC Number:
Peng LI, Zhonghe HAN, Xiaoqiang JIA, Zhongkai MEI, Xu HAN. Influence of dynamic turbine efficiency on performance of organic Rankine cycle system[J]. CIESC Journal, 2019, 70(4): 1532-1541.
李鹏, 韩中合, 贾晓强, 梅中恺, 韩旭. 动态透平效率对有机朗肯循环系统性能的影响[J]. 化工学报, 2019, 70(4): 1532-1541.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20180928
Parameter | Symbol | Value |
---|---|---|
nozzle velocity coefficient | ? | 0.95 |
rotor blade velocity coefficient | ψ | 0.85 |
ratio of wheel diameter | D r | 0.5 |
absolute velocity angle at rotor inlet | α 1 | 15 |
relative velocity angle at rotor outlet | β 2 | 30 |
Table 1 Initial parameters for radial-inflow turbine
Parameter | Symbol | Value |
---|---|---|
nozzle velocity coefficient | ? | 0.95 |
rotor blade velocity coefficient | ψ | 0.85 |
ratio of wheel diameter | D r | 0.5 |
absolute velocity angle at rotor inlet | α 1 | 15 |
relative velocity angle at rotor outlet | β 2 | 30 |
Parameter | Value |
---|---|
heat source inlet temperature/K | 433.15 |
heat source outlet temperature/K | 363.15 |
amount of waste heat/MW | 1 |
ambient temperature/K | 293.15 |
ambient pressure/MPa | 1.01 |
pump isentropic efficiency/% | 80 |
interest rate/% | 10 |
plant economic life/a | 20 |
annual plat operation time/h | 7000 |
Table 2 Cycle and economic parameters for simulation of ORC system
Parameter | Value |
---|---|
heat source inlet temperature/K | 433.15 |
heat source outlet temperature/K | 363.15 |
amount of waste heat/MW | 1 |
ambient temperature/K | 293.15 |
ambient pressure/MPa | 1.01 |
pump isentropic efficiency/% | 80 |
interest rate/% | 10 |
plant economic life/a | 20 |
annual plat operation time/h | 7000 |
Working fluid | Molar mass/(g·mol-1) | Normal boiling point/K | Critical pressure/MPa | Critical temperature/K |
---|---|---|---|---|
R236ea | 152.039 | 279.34 | 3.502 | 412.44 |
R114 | 170.921 | 276.741 | 3.257 | 418.83 |
R245fa | 134.048 | 288.29 | 3.651 | 427.16 |
R245ca | 134.049 | 298.28 | 3.925 | 447.57 |
R123 | 152.931 | 300.973 | 3.662 | 456.831 |
isopentane | 72.149 | 300.98 | 3.378 | 460.35 |
pentane | 72.149 | 309.21 | 3.37 | 469.7 |
cyclohexane | 84.161 | 353.886 | 4.075 | 553.64 |
Table 3 Properties of working fluid candidates
Working fluid | Molar mass/(g·mol-1) | Normal boiling point/K | Critical pressure/MPa | Critical temperature/K |
---|---|---|---|---|
R236ea | 152.039 | 279.34 | 3.502 | 412.44 |
R114 | 170.921 | 276.741 | 3.257 | 418.83 |
R245fa | 134.048 | 288.29 | 3.651 | 427.16 |
R245ca | 134.049 | 298.28 | 3.925 | 447.57 |
R123 | 152.931 | 300.973 | 3.662 | 456.831 |
isopentane | 72.149 | 300.98 | 3.378 | 460.35 |
pentane | 72.149 | 309.21 | 3.37 | 469.7 |
cyclohexane | 84.161 | 353.886 | 4.075 | 553.64 |
1 | Saloux E , Sorin M , Nesreddine H , et al . Reconstruction procedure of the thermodynamic cycle of organic Rankine cycles (ORC) and selection of the most appropriate working fluid[J]. Applied Thermal Engineering, 2018, 129: 628-635. |
2 | 吴玉庭, 赵英昆, 雷标, 等 . 冷却水流量对ORC系统性能影响的实验研究[J].化工学报, 2018, 69(6): 2639-2645. |
Wu Y T , Zhao Y K , Lei B , et al . Effect of cooling water flow rate on power generation of organic Rankine cycle system[J]. CIESC Journal, 2018, 69(6): 2639-2645. | |
3 | Frutiger J , Andreasen J , Liu W , et al . Working fluid selection for organic Rankine cycles – impact of uncertainty of fluid properties[J]. Energy, 2016, 109: 987-997. |
4 | 许俊俊, 罗向龙, 王永真, 等 . ORC工质选择的多级非结构性模糊决策分析[J]. 化工学报, 2015, 66(3): 1051-1058. |
Xu J J , Luo X L , Wang Y Z , et al . Optimum selection of ORC working fluid using multi-level fuzzy optimization and non-structural fuzzy decision[J]. CIESC Journal, 2015, 66(3): 1051-1058. | |
5 | Wang E H , Zhang H G , Fan B Y , et al . Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery[J]. Energy, 2011, 36(5): 3406-3418. |
6 | 顾煜炯, 耿直, 谢典 . 太阳能有机朗肯循环系统性能分析及综合评价[J]. 太阳能学报, 2018, 39(2): 482-490. |
Gu Y J , Geng Z , Xie D . Performance analysis and comprehensive evaluation of organic Rankine cycle system driven by solar energy[J]. Acta Energiae Solaris Sinica, 2018, 39(2): 482-490. | |
7 | El-Emam R S , Dincer I . Exergy and exergoeconomic analyses and optimization of geothermal organic Rankine cycle[J]. Applied Thermal Engineering, 2013, 59(1/2): 435-444. |
8 | Li Y R , Du M T , Wu C M , et al . Economical evaluation and optimization of subcritical organic Rankine cycle based on temperature matching analysis[J]. Energy, 2014, 68(5): 238-247. |
9 | Han Z H , Li P , Han X , et al . Thermo-economic performance analysis of a regenerative superheating organic Rankine cycle for waste heat recovery[J]. Energies, 2017, 10(10): 1593. |
10 | 王漫, 王江峰, 阎哲泉, 等 . 有机工质低温余热发电系统多目标优化设计[J]. 动力工程学报, 2013, 33(4): 387-392. |
Wang M , Wang J F , Yan Z Q , et al . Multi-objective optimization of low-temperature waste-heat ORC power generation systems[J]. Journal of Chinese Society of Power Engineering, 2013, 33(5): 387-392. | |
11 | 王华荣, 徐进良 . 采用BP-GA算法的有机朗肯循环多目标优化[J]. 中国电机工程学报, 2016, 36(12): 3168-3175. |
Wang H R , Xu J L . Multi-objective optimization for organic Rankine cycle using BP-GA algorithm[J]. Proceedings of the CSEE, 2016, 36(12): 3168-3175. | |
12 | Zhang S , Wang H , Tao G , et al . Performance comparison and parametric optimization of subcritical organic Rankine cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation[J]. Applied Energy, 2011, 88(8): 2740-2754. |
13 | Özahi E , Tozlu A , Abuşoğlu A . Thermoeconomic multi-objective optimization of an organic Rankine cycle (ORC) adapted to an existing solid waste power plant[J]. Energy Conversion and Management, 2018, 168: 308-319. |
14 | Rayegan R , Tao Y X . A procedure to select working fluids for solar organic Rankine cycles (ORCs)[J]. Renewable Energy, 2011, 36(2): 659-670. |
15 | Wang Y Z , Zhao J , Wang Y , et al . Multi-objective optimization and grey relational analysis on configurations of organic Rankine cycle[J]. Applied Thermal Engineering, 2017, 114: 1355-1363. |
16 | Yekoladio P J , Bello-Ochende T , Meyer J P . Thermodynamic analysis and performance optimization of organic Rankine cycles for the conversion of low‐to‐moderate grade geothermal heat[J]. International Journal of Energy Research, 2015, 39(9): 1256-1271. |
17 | Garg P , Orosz M S . Economic optimization of organic Rankine cycle with pure fluids and mixtures for waste heat and solar applications using particle swarm optimization method[J]. Energy Conversion and Management, 2018, 165: 649-668. |
18 | Sun J , Li W . Operation optimization of an organic Rankine cycle (ORC) heat recovery power plant[J]. Applied Thermal Engineering, 2011, 31(11): 2032-2041. |
19 | Song J , Gu C W , Ren X . Influence of the radial-inflow turbine efficiency prediction on the design and analysis of the organic Rankine cycle (ORC) system[J]. Energy Conversion and Management, 2016, 123: 308-316. |
20 | Song J , Gu C W , Ren X . Parametric design and off-design analysis of organic Rankine cycle (ORC) system[J]. Energy Conversion and Management, 2016, 112: 157-165. |
21 | Zhai L , Xu G , Wen J , et al . An improved modeling for low-grade organic Rankine cycle coupled with optimization design of radial-inflow turbine[J]. Energy Conversion and Management, 2017, 153: 60-70. |
22 | Dong B , Xu G , Li T , et al . Parametric analysis of organic Rankine cycle based on a radial turbine for low-grade waste heat recovery[J]. Applied Thermal Engineering, 2017, 126: 470-479. |
23 | Bejan A , Tsatsaronis G , Moran M , et al . Thermal Design and Optimization[M]. John Wiley & Sons, 1996. |
24 | Xiao L , Wu S Y , Yi T T , et al . Multi-objective optimization of evaporation and condensation temperatures for subcritical organic Rankine cycle[J]. Energy, 2015, 83: 723-733. |
25 | 李燕生, 陆桂林 . 向心透平与离心压气机[M]. 北京:机械工业出版社, 1987. |
Li Y S , Lu G L . Radial-inflow Turbine and Centrifugal Compressor[M]. Beijing: China Machine Press, 1987. | |
26 | 舒士甄, 朱力, 柯玄龄, 等 . 叶轮机械原理[M]. 北京: 清华大学出版社, 1991. |
Shu S Z , Zhu L , Ke X L , et al . Fluid Mechanics and Thermodynamics of Turbomachinery[M]. Beijing: Tsinghua University Press, 1991. | |
27 | Han Z H , Fan W , Zhao R C . Improved thermodynamic design of organic radial-inflow turbine and ORC system thermal performance analysis[J]. Energy Conversion and Management, 2017, 150: 259-268. |
28 | 陈奇成, 徐进良, 苗政 . 中温热源驱动有机朗肯循环工质研究[J]. 中国电机工程学报, 2013, 33(32): 1-7. |
Chen Q C , Xu J L , Miao Z . Working fluid selection for medium temperature organic Rankine cycle[J]. Proceedings of the CSEE, 2013, 33(32): 1-7. | |
29 | Chen Q , Xu J , Chen H . A new design method for Organic Rankine cycles with constraint of inlet and outlet heat carrier fluid temperatures coupling with the heat source[J]. Applied Energy, 2012, 98: 562-573. |
30 | Jones A C . Design and test of a small, high pressure ratio radial turbine[J]. Journal of Turbomachinery, 1996, 118(2): 362-370. |
31 | Feng Y , Hung T C , Greg K , et al . Thermoeconomic comparison between pure and mixture working fluids of organic Rankine cycles (ORCs) for low temperature waste heat recovery[J]. Energy Conversion and Management, 2015, 106: 859-872. |
[1] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[2] | Yurong DANG, Chunlan MO, Kerui SHI, Yingcong FANG, Ziyang ZHANG, Zuoshun LI. Comprehensive evaluation model combined with genetic algorithm for the study on the performance of ORC system with zeotropic mixture [J]. CIESC Journal, 2023, 74(5): 1884-1895. |
[3] | Sheng’an ZHANG, Guilian LIU. Multi-objective optimization of high-efficiency solar water electrolysis hydrogen production system and its performance [J]. CIESC Journal, 2023, 74(3): 1260-1274. |
[4] | Qucheng LIN, Zuwei LIAO. Multi-objective optimization of work and heat exchange networks based on a decomposition algorithm [J]. CIESC Journal, 2022, 73(11): 5047-5055. |
[5] | Xu LIU, Songlin XU, Yanfei WANG. Global multi-objective optimization of trimethyl orthoformate-acetic acid extractive distillation [J]. CIESC Journal, 2022, 73(10): 4518-4526. |
[6] | Zihang LI, Zhanbo WANG, Zheng MIAO, Xianbing JI. Working fluid selection and thermo-economic analysis of sub-critical organic Rankine cycle [J]. CIESC Journal, 2021, 72(9): 4487-4495. |
[7] | CAO Jian, FENG Xin, JI Xiaoyan, LU Xiaohua. Study on the theoretical limit performance of multi-pressure evaporation ORC based on zeotropic mixture [J]. CIESC Journal, 2021, 72(7): 3780-3787. |
[8] | WEI Bin, ZHOU Xin, WANG Yaowei, GUO Zhenlian, CHEN Xiaobo, LIU Yibin, YANG Chaohe. Multi-objective optimization of FCC separation system based on improved NSGA-Ⅱ [J]. CIESC Journal, 2021, 72(5): 2735-2744. |
[9] | ZHAO Yang, XIONG Weili. Multi-objective optimization control of wastewater treatment process based on multi-strategy adaptive differential evolution algorithm [J]. CIESC Journal, 2021, 72(4): 2167-2177. |
[10] | RONG-YANG Yiming, WU Qiaoxian, ZHOU Xia, FANG Song, WANG Kai, QIU Limin, ZHI Xiaoqin. Research on optimization of self-utilization performance of air compression waste heat in air separation system [J]. CIESC Journal, 2021, 72(3): 1654-1666. |
[11] | ZHU Pengfei, GUO Leilei, YAO Jing, YANG Fusheng, ZHANG Zaoxiao, WU Zhen. Parameter analysis and optimization of power and heat cogeneration system with biomass fueled SOFC and engine [J]. CIESC Journal, 2021, 72(2): 1089-1099. |
[12] | Chaonan CHEN, Xianglong LUO, Zhi YANG, Renlong HUANG, Pei LU, Jianyong CHEN, Ying CHEN. Thermo-economic modelling and optimization of a zeotropic organic Rankine cycle with composition adjustment [J]. CIESC Journal, 2020, 71(5): 2373-2381. |
[13] | Le WU, Jing WANG, Yuqi WANG, Lan ZHENG. Multi-objective optimization of co-processing of bio-oil and vacuum gas oil in FCC [J]. CIESC Journal, 2020, 71(5): 2182-2189. |
[14] | Yong MING, Yannan PENG, Wen SU, Guolong WEI, Qiang WANG, Naijun ZHOU, Li ZHAO. Thermodynamic performance comparison of ORC between mixtures and pure fluids under closed heat source [J]. CIESC Journal, 2020, 71(4): 1570-1579. |
[15] | Lu YANG, Shuoshi LIU, Xiaoyan LUO, Siyu YANG, Yu QIAN. Multi-objective operation optimization of olefin separation process for MTO plant [J]. CIESC Journal, 2020, 71(10): 4720-4732. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||