CIESC Journal ›› 2019, Vol. 70 ›› Issue (4): 1429-1435.DOI: 10.11949/j.issn.0438-1157.20181396
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Wensheng LIANG(),Jiangtao LIU,Yue ZHAO,Wei HUANG,Zhijun ZUO(
)
Received:
2018-11-22
Revised:
2019-01-08
Online:
2019-04-05
Published:
2019-04-05
Contact:
Zhijun ZUO
通讯作者:
左志军
作者简介:
<named-content content-type="corresp-name">梁文胜</named-content>(1993—),男,硕士研究生,<email>13663434400@163.com</email>|左志军(1981—),男,博士,教授,<email>zuozhijun@tyut.edu.cn</email>
基金资助:
CLC Number:
Wensheng LIANG, Jiangtao LIU, Yue ZHAO, Wei HUANG, Zhijun ZUO. Theoretical calculation of effect of NiO and Ni catalysts for benzoic acid pyrolysis[J]. CIESC Journal, 2019, 70(4): 1429-1435.
梁文胜, 刘江涛, 赵月, 黄伟, 左志军. NiO和Ni催化剂对苯甲酸热解机理的理论计算[J]. 化工学报, 2019, 70(4): 1429-1435.
Catalyst | Specie | Site | E ads/eV | Bond length/nm |
---|---|---|---|---|
NiO(100) | C6H5COO | Nibri | -1.80 | d O—Ni =0.1980 |
C6H5 | Otop | -1.10 | d C—O =0.1386 | |
H | Otop | -1.20 | d H—O =0.0981 | |
C6H6 | no bond | -0.01 | ||
CO2 | Nitop,Otop | -0.05 | d C—O=0.1458,d O—Ni=0.2162 | |
Ni (111) | C6H5COOH | top | -0.18 | d O—Ni =0.1987 |
C6H6COO | bridge | -2.11 | d O—Ni =0.1956 | |
C6H5COO | bridge | -3.08 | d O—Ni=0.1949 | |
C6H5 | top | -2.88 | d O—Ni =0.1871 | |
H | fcc | -2.35 | d H—Ni =0.1709 | |
C6H6 | no bond | -0.05 | ||
CO2 | no bond | -0.02 |
Table 1 Adsorption energies and geometrical parameters for relevant species on NiO(100) and Ni(111) surfaces
Catalyst | Specie | Site | E ads/eV | Bond length/nm |
---|---|---|---|---|
NiO(100) | C6H5COO | Nibri | -1.80 | d O—Ni =0.1980 |
C6H5 | Otop | -1.10 | d C—O =0.1386 | |
H | Otop | -1.20 | d H—O =0.0981 | |
C6H6 | no bond | -0.01 | ||
CO2 | Nitop,Otop | -0.05 | d C—O=0.1458,d O—Ni=0.2162 | |
Ni (111) | C6H5COOH | top | -0.18 | d O—Ni =0.1987 |
C6H6COO | bridge | -2.11 | d O—Ni =0.1956 | |
C6H5COO | bridge | -3.08 | d O—Ni=0.1949 | |
C6H5 | top | -2.88 | d O—Ni =0.1871 | |
H | fcc | -2.35 | d H—Ni =0.1709 | |
C6H6 | no bond | -0.05 | ||
CO2 | no bond | -0.02 |
1 | Han J , Wang X , Yue J , et al . Catalytic upgrading of coal pyrolysis tar over char-based catalysts[J]. Fuel Processing Technology, 2014, 122: 98-106. |
2 | Rombi E , Cutrufello M G , Atzori L , et al . CO methanation on Ni-Ce mixed oxides prepared by hard template method[J]. Applied Catalysis A: General, 2016, 515: 144-153. |
3 | Wang S G , Cao D B , Li Y W , et al . CO2 reforming of CH4 on Ni (111): a density functional theory calculation[J]. The Journal of Physical Chemistry B, 2006, 110(20): 9976-9983. |
4 | Wang S G , Liao X Y , Hu J , et al . Kinetic aspect of CO2 reforming of CH4 on Ni(111): a density functional theory calculation[J]. Surface Science, 2007, 601(5): 1271-1284. |
5 | Solomon P R , Serio M A , Carangelo R M , et al . Analysis of the Argonne premium coal samples by thermogravimetric Fourier transform infrared spectroscopy[J]. Energy & Fuels, 1990, 4(3): 319-333. |
6 | Choe S J , Kang H J , Park D H , et al . Adsorption and dissociation reaction of carbon dioxide on Ni (1 1 1) surface: molecular orbital study[J]. Applied Surface Science, 2001, 181(3/4): 265-276. |
7 | Kresse G , Furthmüller J . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169. |
8 | Kresse G , Furthmüller J . Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50. |
9 | Blöchl P E . Projector augmented-wave method[J]. Physical Review B, 1994, 50(24): 17953-17979. |
10 | Perdew J P , Burke K , Ernzerhof M . Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865. |
11 | Kresse G , Joubert D . From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758. |
12 | Sheppard D , Xiao P , Chemelewski W , et al . A generalized solid-state nudged elastic band method[J]. J. Chem. Phys., 2012, 136(7): 074103. |
13 | Kong L , Li G , Jin L , et al . Pyrolysis behaviors of two coal-related model compounds on a fixed-bed reactor[J]. Fuel Processing Technology, 2015, 129: 113-119. |
14 | Li L , Fan H , Hu H . A theoretical study on bond dissociation enthalpies of coal based model compounds[J]. Fuel, 2015, 153: 70-77. |
15 | Wang M F , Zuo Z J , Ren R P , et al . Theoretical study on catalytic pyrolysis of benzoic acid as a coal-based model compound[J]. Energy & Fuels, 2016, 30(4): 2833-2840. |
16 | 凌丽霞, 赵俐娟, 章日光, 等 . 苯甲酸和苯甲醛热解机理的量子化学研究[J]. 化工学报, 2009, 60(5): 1224-1230. |
Ling L X , Zhao L J , Zhang R G , et al . Pyrolysis mechanisms of benzoic acid and benzaldehyde based on quantum chemistry[J]. CIESC Journal, 2009, 60(5): 1224-1230. | |
17 | Xu B , Lu W , Sun Z , et al . High-quality oil and gas from pyrolysis of Powder River Basin coal catalyzed by an environmentally-friendly, inexpensive composite iron-sodium catalysts[J]. Fuel Processing Technology, 2017, 167: 334-344. |
18 | Rodriguez J A , Hanson J C , Frenkel A I , et al . Experimental and theoretical studies on the reaction of H2 with NiO: role of O vacancies and mechanism for oxide reduction[J]. Journal of the American Chemical Society, 2002, 124(2): 346-354. |
19 | Selcuk S , Selloni A . DFT+U study of the surface structure and stability of Co3O4(110): dependence on U[J]. The Journal of Physical Chemistry C, 2015, 119(18): 9973-9979. |
20 | Wang L , Maxisch T , Ceder G . Oxidation energies of transition metal oxides with in the GGA+U framework[J]. Physical Review B, 2006, 73(19): 195107. |
21 | Dudarev S L , Botton G A , Savrasov S Y , et al . Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+ U study[J]. Physical Review B, 1998, 57(3): 1505. |
22 | Hüfner S . Electronic structure of NiO and related 3d-transition-metal compounds[J]. Advances in Physics, 1994, 43(2): 183-356. |
23 | Yan M , Chen S P , Mitchell T E , et al . Atomistic studies of energies and structures of (hk0) surfaces in NiO[J]. Philosophical Magazine A, 1995, 72(1): 121-138. |
24 | Li L , Kanai Y . Antiferromagnetic structures and electronic energy levels at reconstructed NiO(111) surfaces: ADFT+U study[J]. Physical Review B, 2015, 91(23): 235304. |
25 | Zeng Y , Ma H , Zhang H , et al . Ni-Ce-Al composite oxide catalysts synthesized by solution combustion method: enhanced catalytic activity for CO methanation[J]. Fuel, 2015, 162: 16-22. |
26 | Kresse G , Hafner J . Ab initio molecular dynamics for liquid metals[J]. Physical Review B, 1993, 47(1): 558-561. |
27 | Rohrbach A , Hafner J , Kresse G . Molecular adsorption on the surface of strongly correlated transition-metal oxides: a case study for CO/NiO(100)[J]. Physical Review B, 2004, 69(7): 075413. |
28 | Wang B , Nisar J , Ahuja R . Molecular simulation for gas adsorption at NiO (100) surface[J]. ACS Applied Materials & Interfaces, 2012, 4(10): 5691-5697. |
29 | Eskay T P , Britt P F , Buchanan III A C . Pyrolysis of coal model compounds containing aromatic carboxylic acids: the role of carboxylic acids in cross-linking reactions in low-rank coal[R]. Oak Ridge National Lab., TN (United States), 1997. |
30 | Eskay T P , Britt P F , Buchanan A C . Does decarboxylation lead to cross-linking in low-rank coals?[J]. Energy & Fuels, 1996, 10(6): 1257-1261. |
31 | Manion J A , McMillen D F , Malhotra R . Decarboxylation and coupling reactions of aromatic acids under coal-liquefaction conditions[J]. Energy & Fuels, 1996, 10(3): 776-788. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||