CIESC Journal ›› 2019, Vol. 70 ›› Issue (2): 736-749.DOI: 10.11949/j.issn.0438-1157.20180842
Previous Articles Next Articles
Received:
2018-07-21
Revised:
2018-11-22
Online:
2019-02-05
Published:
2019-02-05
Contact:
Weili XIONG
通讯作者:
熊伟丽
作者简介:
<named-content content-type="corresp-name">顾炳斌</named-content>(1995—),男,硕士研究生,<email>18861822198@163.com</email>|熊伟丽(1978—),女,博士,教授,<email>greenpre@163.com</email>
基金资助:
CLC Number:
Bingbin GU, Weili XIONG. Fault diagnosis based on PCA method with multi-block information extraction[J]. CIESC Journal, 2019, 70(2): 736-749.
顾炳斌, 熊伟丽. 基于多块信息提取的PCA故障诊断方法[J]. 化工学报, 2019, 70(2): 736-749.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20180842
子块编号 | 训练数据集 | 测试样本 |
---|---|---|
1 | ||
2 | ||
3 |
Table 1 Sub-block division results
子块编号 | 训练数据集 | 测试样本 |
---|---|---|
1 | ||
2 | ||
3 |
故障编号 | 子块1 | 子块2 | 子块3 | BIC | ||||
---|---|---|---|---|---|---|---|---|
T2 | SPE | T2 | SPE | T2 | SPE | T2 | SPE | |
1 | 0.88 | 0.13 | 1.25 | 0.38 | 89.74 | 83.23 | 0.88 | 0.25 |
2 | 1.63 | 4.26 | 1.63 | 2 | 97.87 | 97.37 | 1.4 | 2.38 |
3 | 99.12 | 97.37 | 97.75 | 96.25 | 98.25 | 96.62 | 99.25 | 96.25 |
4 | 79.1 | 0 | 22.4 | 0 | 98.5 | 97.87 | 36.67 | 0 |
5 | 75.72 | 79.1 | 66.46 | 0.13 | 91.86 | 87.98 | 70.46 | 0 |
6 | 0.88 | 0 | 1.13 | 0.13 | 97.12 | 84.61 | 1 | 0 |
7 | 0 | 0 | 0.13 | 0.13 | 79.6 | 76.97 | 0 | 0 |
8 | 3.13 | 16.4 | 3.38 | 2.13 | 59.95 | 34.67 | 3.38 | 1.38 |
9 | 98.25 | 98.25 | 98.12 | 93.99 | 97.62 | 96.5 | 99.12 | 94.99 |
10 | 70.09 | 74.22 | 59.2 | 62.33 | 92.37 | 84.73 | 62.33 | 60.08 |
11 | 59.32 | 25.16 | 33.54 | 4.38 | 93.49 | 93.37 | 31.66 | 3.49 |
12 | 1.63 | 10.51 | 2.38 | 0.88 | 26.78 | 20.65 | 1.13 | 1 |
13 | 6.38 | 4.76 | 5.88 | 4.63 | 45.56 | 28.29 | 5.88 | 4.41 |
14 | 0.75 | 0 | 74.47 | 10.76 | 0.13 | 1.38 | 0 | 0 |
15 | 98.62 | 97 | 96.37 | 96.37 | 98.37 | 97 | 98.25 | 95.12 |
16 | 86.61 | 72.59 | 79.72 | 62.33 | 88.36 | 84.61 | 78.6 | 60.45 |
17 | 23.53 | 4.63 | 11.39 | 2.63 | 89.11 | 57.57 | 12.39 | 2.33 |
18 | 10.76 | 9.89 | 10.51 | 9.51 | 83.73 | 78.35 | 11.01 | 9.41 |
19 | 88.99 | 87.61 | 88.86 | 88.11 | 74.72 | 45.06 | 75.34 | 44.18 |
20 | 68.34 | 50.31 | 66.96 | 32.79 | 86.98 | 89.61 | 64.58 | 36.47 |
21 | 60.83 | 52.82 | 54.69 | 31.16 | 98.62 | 98.75 | 58.32 | 34.67 |
平均故障漏报率 | 44.50 | 37.38 | 41.72 | 28.26 | 80.42 | 73.10 | 38.65 | 26.12 |
平均故障误报率 | 0.52 | 1.32 | 0.8 | 3.35 | 1.38 | 2.67 | 0.37 | 3.07 |
Table 2 Missing alarm rates of TE process/%
故障编号 | 子块1 | 子块2 | 子块3 | BIC | ||||
---|---|---|---|---|---|---|---|---|
T2 | SPE | T2 | SPE | T2 | SPE | T2 | SPE | |
1 | 0.88 | 0.13 | 1.25 | 0.38 | 89.74 | 83.23 | 0.88 | 0.25 |
2 | 1.63 | 4.26 | 1.63 | 2 | 97.87 | 97.37 | 1.4 | 2.38 |
3 | 99.12 | 97.37 | 97.75 | 96.25 | 98.25 | 96.62 | 99.25 | 96.25 |
4 | 79.1 | 0 | 22.4 | 0 | 98.5 | 97.87 | 36.67 | 0 |
5 | 75.72 | 79.1 | 66.46 | 0.13 | 91.86 | 87.98 | 70.46 | 0 |
6 | 0.88 | 0 | 1.13 | 0.13 | 97.12 | 84.61 | 1 | 0 |
7 | 0 | 0 | 0.13 | 0.13 | 79.6 | 76.97 | 0 | 0 |
8 | 3.13 | 16.4 | 3.38 | 2.13 | 59.95 | 34.67 | 3.38 | 1.38 |
9 | 98.25 | 98.25 | 98.12 | 93.99 | 97.62 | 96.5 | 99.12 | 94.99 |
10 | 70.09 | 74.22 | 59.2 | 62.33 | 92.37 | 84.73 | 62.33 | 60.08 |
11 | 59.32 | 25.16 | 33.54 | 4.38 | 93.49 | 93.37 | 31.66 | 3.49 |
12 | 1.63 | 10.51 | 2.38 | 0.88 | 26.78 | 20.65 | 1.13 | 1 |
13 | 6.38 | 4.76 | 5.88 | 4.63 | 45.56 | 28.29 | 5.88 | 4.41 |
14 | 0.75 | 0 | 74.47 | 10.76 | 0.13 | 1.38 | 0 | 0 |
15 | 98.62 | 97 | 96.37 | 96.37 | 98.37 | 97 | 98.25 | 95.12 |
16 | 86.61 | 72.59 | 79.72 | 62.33 | 88.36 | 84.61 | 78.6 | 60.45 |
17 | 23.53 | 4.63 | 11.39 | 2.63 | 89.11 | 57.57 | 12.39 | 2.33 |
18 | 10.76 | 9.89 | 10.51 | 9.51 | 83.73 | 78.35 | 11.01 | 9.41 |
19 | 88.99 | 87.61 | 88.86 | 88.11 | 74.72 | 45.06 | 75.34 | 44.18 |
20 | 68.34 | 50.31 | 66.96 | 32.79 | 86.98 | 89.61 | 64.58 | 36.47 |
21 | 60.83 | 52.82 | 54.69 | 31.16 | 98.62 | 98.75 | 58.32 | 34.67 |
平均故障漏报率 | 44.50 | 37.38 | 41.72 | 28.26 | 80.42 | 73.10 | 38.65 | 26.12 |
平均故障误报率 | 0.52 | 1.32 | 0.8 | 3.35 | 1.38 | 2.67 | 0.37 | 3.07 |
故障编号 | PCA | DPCA | MSMBPCA | FBPCA | MBI-PCA |
---|---|---|---|---|---|
T2 or SPE | |||||
0 | 0.022 | 0.026 | 0.0214 | 0.06 | 0.0144 |
1 | 0 | 0 | 0 | 0 | 0 |
2 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 |
3 | 0.97 | 0.94 | — | 0.88 | 0.96 |
4 | 0 | 0 | 0 | 0 | 0 |
5 | 0.75 | 0 | 0 | 0 | 0 |
6 | 0 | 0 | 0 | 0 | 0 |
7 | 0 | 0 | 0 | 0 | 0 |
8 | 0.03 | 0.02 | 0.03 | 0.01 | 0.01 |
9 | 0.98 | 0.93 | — | 0.91 | 0.95 |
10 | 0.7 | 0.44 | 0.18 | 0.11 | 0.6 |
11 | 0.25 | 0.22 | 0.3 | 0.19 | 0.03 |
12 | 0.02 | 0.01 | 0.02 | 0.01 | 0.01 |
13 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
14 | 0 | 0 | 0 | 0 | 0 |
15 | 0.97 | 0.93 | — | 0.78 | 0.95 |
16 | 0.73 | 0.52 | 0.15 | 0.1 | 0.30 |
17 | 0.05 | 0.03 | 0.13 | 0.03 | 0.03 |
18 | 0.10 | 0.09 | 0.1 | 0.1 | 0.09 |
19 | 0.88 | 0.8 | 0.48 | 0.3 | 0.44 |
20 | 0.50 | 0.27 | 0.33 | 0.1 | 0.36 |
21 | 0.53 | 0.44 | 0.46 | 0.33 | 0.35 |
Table 3 Comparison of some state of multi-block monitoring methods
故障编号 | PCA | DPCA | MSMBPCA | FBPCA | MBI-PCA |
---|---|---|---|---|---|
T2 or SPE | |||||
0 | 0.022 | 0.026 | 0.0214 | 0.06 | 0.0144 |
1 | 0 | 0 | 0 | 0 | 0 |
2 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 |
3 | 0.97 | 0.94 | — | 0.88 | 0.96 |
4 | 0 | 0 | 0 | 0 | 0 |
5 | 0.75 | 0 | 0 | 0 | 0 |
6 | 0 | 0 | 0 | 0 | 0 |
7 | 0 | 0 | 0 | 0 | 0 |
8 | 0.03 | 0.02 | 0.03 | 0.01 | 0.01 |
9 | 0.98 | 0.93 | — | 0.91 | 0.95 |
10 | 0.7 | 0.44 | 0.18 | 0.11 | 0.6 |
11 | 0.25 | 0.22 | 0.3 | 0.19 | 0.03 |
12 | 0.02 | 0.01 | 0.02 | 0.01 | 0.01 |
13 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
14 | 0 | 0 | 0 | 0 | 0 |
15 | 0.97 | 0.93 | — | 0.78 | 0.95 |
16 | 0.73 | 0.52 | 0.15 | 0.1 | 0.30 |
17 | 0.05 | 0.03 | 0.13 | 0.03 | 0.03 |
18 | 0.10 | 0.09 | 0.1 | 0.1 | 0.09 |
19 | 0.88 | 0.8 | 0.48 | 0.3 | 0.44 |
20 | 0.50 | 0.27 | 0.33 | 0.1 | 0.36 |
21 | 0.53 | 0.44 | 0.46 | 0.33 | 0.35 |
1 | QinS J. Statistical process monitoring: basics and beyond [J]. Journal of Chemometrics, 2003, 17(8/9): 480-502 |
2 | GeZ Q, SongZ H, GaoF R. Review of recent research on data-based process monitoring [J]. Industrial & Engineering Chemistry Research, 2013, 52(10): 3543-3562. |
3 | GeZ Q, SongZ H. Multivariate Statistical Process Control [M]. London: Springer, 2013: 169-182. |
4 | 韩敏, 张占奎. 基于改进核主成分分析的故障检测与诊断方法[J]. 化工学报, 2015, 66(6): 2139-2149. |
HanM, ZhangZ K. Fault detection and diagnosis method based on modified kernel principal component analysis [J]. CIESC Journal, 2015, 66(6): 2139-2149. | |
5 | 李晗, 萧德云. 基于数据驱动的故障诊断方法综述[J]. 控制与决策, 2011, 26(1): 1-9. |
LiH, XiaoD Y. Survey on data driven fault diagnosis methods [J]. Control and Decision, 2011, 26(1): 1-9. | |
6 | LeeJ M, YooC K, SangW C, et al. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2004, 59(1): 223-234. |
7 | GeZ Q, SongZ H. Process monitoring based on independent component analysis−principal component analysis (ICA− PCA) and similarity factors [J]. Industrial & Engineering Chemistry Research, 2007, 46(7): 2054-2063. |
8 | LiG, QinS J, ZhouD H. A new method of dynamic latent-variable modeling for process monitoring [J]. IEEE Transactions on Industrial Electronics, 2014, 61(11): 6438-6445. |
9 | 谭帅, 王福利, 常玉清, 等. 基于差分分段PCA的多模态过程故障监测[J]. 自动化学报, 2010, 36(11): 1626-1636. |
TanS, WangF L, ChangY Q, et al. Fault detection of multi-mode process using segmented PCA based on differential transform [J]. Acta Automatica Sinica, 2010, 36(11): 1626-1636. | |
10 | 王健, 冯健, 韩志艳. 基于流形学习的局部保持 PCA 算法在故障检测中的应用[J]. 控制与决策, 2013, 28(5): 683-687. |
WangJ, FengJ, HanZ Y. Locally preserving PCA method based on manifold learning and its application in fault detection[J]. Control and Decision, 2013, 28(5): 683-687. | |
11 | ZhaoC, GaoF. Fault-relevant principal component analysis (FPCA) method for multivariate statistical modeling and process monitoring[J]. Chemometrics & Intelligent Laboratory Systems, 2014, 133: 1-16. |
12 | MacgregorJ F, JaeckleC, KiparissidesC, et al. Process monitoring and diagnosis by multiblock PLS methods [J]. AIChE Journal, 1994, 40(5): 826-838. |
13 | WesterhuisJ A, KourtiT, MacGregorJ F. Analysis of multiblock and hierarchical PCA and PLS models [J]. Journal of Chemometrics, 1998, 12(5): 301-321. |
14 | GeZ Q, ZhangM, SongZ H. Nonlinear process monitoring based on linear subspace and Bayesian inference [J]. Journal of Process Control, 2010, 20(5): 676-688. |
15 | GeZ Q, SongZ H. Distributed PCA model for plant-wide process monitoring [J]. Industrial & Engineering Chemistry Research, 2013, 52(5): 1947-1957. |
16 | WangB, YanX F, JiangQ C, et al. Generalized Dice's coefficient-based multi-block principal component analysis with Bayesian inference for plant-wide process monitoring[J]. Journal of Chemometrics, 2015, 29(3): 165-178. |
17 | HuangJ, YanX F. Dynamic process fault detection and diagnosis based on dynamic principal component analysis, dynamic independent component analysis and Bayesian inference [J]. Chemometrics & Intelligent Laboratory Systems, 2015, 148: 115-127. |
18 | JiangQ C, YanX F, HuangB. Performance-driven distributed PCA process monitoring based on fault-relevant variable selection and Bayesian inference [J]. IEEE Transactions on Industrial Electronics, 2015, 63(1): 377-386. |
19 | GeZ Q, ChenJ. Plant-wide industrial process monitoring: a distributed modeling framework[J]. IEEE Transactions on Industrial Informatics, 2017, 12(1): 310-321. |
20 | 叶昊, 徐海鹏. 基于重构的传感器故障诊断贡献分析[J]. 清华大学学报(自然科学版), 2012, 52(1): 36-39. |
YeH, XuH P. Reconstruction-based contribution analysis for sensor fault diagnostics[J]. Journal of Tsinghua University Science and Technology, 2012, 52(1): 36-39. | |
21 | 彭开香, 马亮, 张凯. 复杂工业过程质量相关的故障检测与诊断技术综述[J]. 自动化学报, 2017, 43(3): 349-365. |
PengK X, MaL, ZhangK. Review of quality-related fault detection and diagnosis techniques for complex industrial processes[J]. Acta Automatica Sinica, 2017, 43(3): 349-365. | |
22 | LauC K, GhoshK, HussainM A, et al. Fault diagnosis of Tennessee Eastman process with multi-scale PCA and ANFIS[J]. Chemometrics & Intelligent Laboratory Systems, 2013, 120(2): 1-14. |
23 | ZhouD H, LiG, QinS J. Total projection to latent structures for process monitoring[J]. AIChE Journal, 2010, 56(1): 168-178. |
24 | 王海清, 余世明. 基于故障诊断性能优化的主元个数选取方法[J]. 化工学报, 2004, 55(2): 214-219. |
WangH Q, YuS M. Selection of the number of principal components based on the fault diagnosing performance analysis[J]. CIESC Journal, 2004, 55(2): 214-219. | |
25 | 苏林, 尚朝轩, 连光耀, 等. 基于故障检测率的主元个数确定方法[J]. 计算机测量与控制, 2011, 19(8): 1857-1860. |
SuL, ShangC X, LianG Y, et al. Selection of number of principal components based on fault detection accuracy[J]. Computer Measurement & Control, 2011, 19(8): 1857-1860. | |
26 | ShenY, DingS X, HaghaniA, et al. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process[J]. Journal of Process Control, 2012, 22(9): 1567-1581. |
27 | RussellE L, ChiangL H , BraatzR D . Tennessee Eastman Process[M]// Fault Detection and Diagnosis in Industrial Systems. London: Springer, 2001: 103-112. |
28 | 衷路生, 何东, 龚锦红, 等. 基于分布式ICA-PCA模型的工业过程故障监测[J]. 化工学报, 2015, 66(11): 4546-4554. |
ZhongL S, HED, GongJ H, et al. Fault monitoring of industrial process based on distributed ICA-PCA model[J]. CIESC Journal, 2015, 66(11): 4546-4554. | |
29 | 王海清, 蒋宁. 自适应Kernel学习网络在TE过程组分仪建模中的应用[J]. 化工学报, 2007, 58(2): 425-430. |
WangH Q, JiangN. Adaptive Kernel learning networks with application to modeling of analyzer in TE process[J]. Journal of Chemical Industry and Engineering(China), 2007, 58(2): 425-430. | |
30 | JiangQ C, YanX F. Nonlinear plant-wide process monitoring using MI-spectral clustering and Bayesian inference-based multiblock KPCA[J]. Journal of Process Control, 2015, 32: 38-50. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||