CIESC Journal ›› 2019, Vol. 70 ›› Issue (2): 750-756.DOI: 10.11949/j.issn.0438-1157.20181361
Previous Articles Next Articles
Junren BAI1(),Jun YI1(),Qian LI2,Ling WU1,Xuemei CHEN1
Received:
2018-11-18
Revised:
2018-12-08
Online:
2019-02-05
Published:
2019-02-05
Contact:
Jun YI
通讯作者:
易军
作者简介:
<named-content content-type="corresp-name">白竣仁</named-content>(1994—),男,硕士研究生,<email>bjr25793@qq.com</email>|易军(1973—),男,教授,博士,<email>laoyifrcq@163.com</email>
基金资助:
CLC Number:
Junren BAI, Jun YI, Qian LI, Ling WU, Xuemei CHEN. Multi-objective optimization of QPSO for thereaction-regeneration process[J]. CIESC Journal, 2019, 70(2): 750-756.
白竣仁, 易军, 李倩, 吴凌, 陈雪梅. 面向反应再生过程的量子粒子群多目标优化[J]. 化工学报, 2019, 70(2): 750-756.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181361
算法 | 指标 | ZDT3(E-3) | ZDT4(E-3) | DTLZ1(E-2) | DTLZ2(E-2) |
---|---|---|---|---|---|
MOBFO | GD SP | 8.435 42.38 | 8.947 36.58 | 33.14 52.21 | 21.65 48.26 |
SPEA2 | GD SP | 8.428 41.42 | 9.157 35.26 | 32.69 51.06 | 18.35 42.36 |
NSGA-II | GD SP | 8.524 41.18 | 9.265 35.01 | 33.18 46.24 | 16.25 43.65 |
MOPSO | GD SP | 8.365 42.12 | 9.542 42.15 | 34.38 53.43 | 18.13 42.32 |
MQPSO | GD SP | 10.23 41.63 | 8.362 42.43 | 25.12 50.92 | 21.02 41.26 |
Table 1 Test results of each algorithm
算法 | 指标 | ZDT3(E-3) | ZDT4(E-3) | DTLZ1(E-2) | DTLZ2(E-2) |
---|---|---|---|---|---|
MOBFO | GD SP | 8.435 42.38 | 8.947 36.58 | 33.14 52.21 | 21.65 48.26 |
SPEA2 | GD SP | 8.428 41.42 | 9.157 35.26 | 32.69 51.06 | 18.35 42.36 |
NSGA-II | GD SP | 8.524 41.18 | 9.265 35.01 | 33.18 46.24 | 16.25 43.65 |
MOPSO | GD SP | 8.365 42.12 | 9.542 42.15 | 34.38 53.43 | 18.13 42.32 |
MQPSO | GD SP | 10.23 41.63 | 8.362 42.43 | 25.12 50.92 | 21.02 41.26 |
参数 | 迭代次数 | 隐含层传递函数 | 输出层传递函数 | 隐含层节点数 | |
---|---|---|---|---|---|
轻质油 | 吸收率 | 500 | Tansig | Purelin | 15 |
焦炭 | 产率 | 500 | Tansig | Purelin | 15 |
硫化物 | 排放量 | 500 | Logsig | Purelin | 15 |
Table 2 BPNN parameter settings
参数 | 迭代次数 | 隐含层传递函数 | 输出层传递函数 | 隐含层节点数 | |
---|---|---|---|---|---|
轻质油 | 吸收率 | 500 | Tansig | Purelin | 15 |
焦炭 | 产率 | 500 | Tansig | Purelin | 15 |
硫化物 | 排放量 | 500 | Logsig | Purelin | 15 |
算法 | 轻质油吸收率/% | 焦炭产率/% | 硫化物排放量/ (mg/m3) | qr | qc | Tr1/℃ | Tr2/℃ | Ta1/℃ | Ta1/℃ | Pr/kPa | Pa/kPa |
---|---|---|---|---|---|---|---|---|---|---|---|
MQPSO-CES | 76.04 | 5.83 | 632 | 0.51 | 5.27 | 503.7 | 493.1 | 656.7 | 681.2 | 235.7 | 283.2 |
76.22 | 5.72 | 626 | 0.48 | 5.18 | 503.9 | 493.5 | 657.3 | 680.7 | 241.1 | 283.8 | |
MQPSO | 75.58 | 6.21 | 658 | 0.47 | 5.66 | 511.7 | 504.2 | 653.1 | 683.5 | 237.6 | 283.4 |
73.65 | 5.82 | 641 | 0.47 | 5.40 | 512.2 | 496.7 | 656.2 | 679.4 | 227.4 | 282.9 | |
MOPSO | 74.38 | 6.27 | 664 | 0.46 | 5.95 | 513.8 | 502.8 | 649.4 | 682.5 | 229.8 | 283.4 |
73.49 | 5.95 | 681 | 0.45 | 5.57 | 513.3 | 495.7 | 651.1 | 678.1 | 231.7 | 283.5 | |
NSGA-II | 75.09 | 6.22 | 672 | 0.45 | 5.56 | 509.9 | 492.1 | 650.8 | 679.3 | 232.5 | 282.4 |
73.25 | 6.11 | 648 | 0.46 | 5.46 | 511.2 | 497.2 | 647.8 | 675.4 | 240.9 | 283.0 | |
SPEA2 | 74.86 | 6.30 | 677 | 0.46 | 5.53 | 512.9 | 502.4 | 650.2 | 681.4 | 229.5 | 282.5 |
73.14 | 6.17 | 668 | 0.45 | 5.32 | 507.5 | 496.7 | 649.5 | 680.5 | 233.4 | 283.1 | |
MOBFO | 74.75 | 5.92 | 654 | 0.44 | 5.78 | 504.8 | 494.8 | 646.7 | 678.7 | 238.5 | 282.1 |
74.36 | 5.84 | 676 | 0.46 | 5.61 | 510.7 | 498.1 | 647.2 | 676.8 | 227.6 | 282.5 |
Table 3 Partial optimization results of FCC reaction and regeneration process
算法 | 轻质油吸收率/% | 焦炭产率/% | 硫化物排放量/ (mg/m3) | qr | qc | Tr1/℃ | Tr2/℃ | Ta1/℃ | Ta1/℃ | Pr/kPa | Pa/kPa |
---|---|---|---|---|---|---|---|---|---|---|---|
MQPSO-CES | 76.04 | 5.83 | 632 | 0.51 | 5.27 | 503.7 | 493.1 | 656.7 | 681.2 | 235.7 | 283.2 |
76.22 | 5.72 | 626 | 0.48 | 5.18 | 503.9 | 493.5 | 657.3 | 680.7 | 241.1 | 283.8 | |
MQPSO | 75.58 | 6.21 | 658 | 0.47 | 5.66 | 511.7 | 504.2 | 653.1 | 683.5 | 237.6 | 283.4 |
73.65 | 5.82 | 641 | 0.47 | 5.40 | 512.2 | 496.7 | 656.2 | 679.4 | 227.4 | 282.9 | |
MOPSO | 74.38 | 6.27 | 664 | 0.46 | 5.95 | 513.8 | 502.8 | 649.4 | 682.5 | 229.8 | 283.4 |
73.49 | 5.95 | 681 | 0.45 | 5.57 | 513.3 | 495.7 | 651.1 | 678.1 | 231.7 | 283.5 | |
NSGA-II | 75.09 | 6.22 | 672 | 0.45 | 5.56 | 509.9 | 492.1 | 650.8 | 679.3 | 232.5 | 282.4 |
73.25 | 6.11 | 648 | 0.46 | 5.46 | 511.2 | 497.2 | 647.8 | 675.4 | 240.9 | 283.0 | |
SPEA2 | 74.86 | 6.30 | 677 | 0.46 | 5.53 | 512.9 | 502.4 | 650.2 | 681.4 | 229.5 | 282.5 |
73.14 | 6.17 | 668 | 0.45 | 5.32 | 507.5 | 496.7 | 649.5 | 680.5 | 233.4 | 283.1 | |
MOBFO | 74.75 | 5.92 | 654 | 0.44 | 5.78 | 504.8 | 494.8 | 646.7 | 678.7 | 238.5 | 282.1 |
74.36 | 5.84 | 676 | 0.46 | 5.61 | 510.7 | 498.1 | 647.2 | 676.8 | 227.6 | 282.5 |
1 | 鲁波娜, 张景远, 王维, 等. FCC反应过程的CFD模拟进展[J]. 化工学报, 2016, 67(8): 3121-3132. |
LuB N, ZhangJ Y, WangW, et al. CFD modeling of FCC reaction process: a review[J]. CIESC Journal, 2016, 67(8): 3121-3132. | |
2 | 刘蕾, 赵众, 陶兴文, 等. 催化裂化反应再生系统的建模与优化[J]. 石油化工自动化, 2009, 26(5): 26-30. |
LiuL, ZhaoZ, TaoX W, et al. The modeling and optimization for FCC reactor-regenerator system[J]. Automation in Petro-Chemical Industry, 2009, 26(5): 26-30. | |
3 | 谢朝钢, 魏晓丽, 龚剑洪, 等. 催化裂化反应机理研究进展及实践应用[J]. 石油学报(石油加工) , 2017 , 33(2): 189-197. |
XieC G, WeiX L, GongJ H, et al. Progress on chemistry of catalytic cracking reaction and its practice[J]. Acta Petroeli Sinica (Petroleum Processing Section), 2017, 33(2): 189-197. | |
4 | 刘梦溪, 卢春喜, 时铭显. 催化裂化后反应系统快分的研究进展[J]. 化工学报, 2016, 67(8): 3133-3145. |
LiuM X, LuC X, ShiM X. Advances in quick separators of post-riser system in FRCC unit [J]. CIESC Journal, 2016, 67(8): 3133-3145. | |
5 | 熊凯, 卢春喜. 催化裂化(裂解)集总反应动力学模型研究进展[J]. 石油学报(石油加工), 2015, 31(2): 295-305. |
XiongK, LuC X. Research progresses of lump kinetic model of FCC and catalytic pyrolysis[J]. Acta Petroeli Sinica (Petroleum Processing Section), 2015, 31(2): 295-305. | |
6 | 吴飞跃, 翁惠新, 罗世贤. FDFCC工艺中重油提升管催化裂化反应动力学模型[J].石油学报, 2008, 24(5): 540-546. |
WuF Y, WengH X, LuoS X. Kinetic model for heavy oil catalytic cracking in riser of FCC process[J]. Acta Petroeli Sinica, 2008, 24(5): 540-546. | |
7 | 张忠洋, 李泽钦, 李宇龙, 等. GA辅助BP神经网络预测催化裂化装置汽油产率[J]. 石油炼制与化工, 2014, 45(7): 91-96. |
ZhangZ Y, LiZ Q, LiY L, et al. Prediction of gasoline yield in FCC unit by GA aided BP neural network[J]. Petroleum Processing and Petrochemicals, 2014, 45(7): 91-96. | |
8 | YiJ, HuangD, LiT F, et al. A novel framework for fault diagnosis using kernel partial least squares based on an optimal preference matrix[J]. IEEE Transaction on Industrial Electronics, 2017, 64(5): 4315-4324. |
9 | YiJ, HuangD, FuS Y, et al. Optimized relative transformation matrix using bacterial foraging algorithm for process fault detection[J]. IEEE Transaction on Industrial Electronics, 2016, 63(4): 2595-2605. |
10 | YiJ, BaiJ R, ZhouW, et al. Operating parameters optimization for the aluminum electrolysis process using an improved quantum-behaved particle swarm algorithm[J]. IEEE Transaction on Industrial Informatics, 2018, 14(8): 3405-3415. |
11 | MichalopoulosJ, PapadokonstadakisS, ArarnpatzisG, et al. Modelling of an industrial fluid catalytic cracking unit using neural networks[J]. Institution of Chemical Engineers, 2001, 79(3): 137-143. |
12 | LidT, StrandS. Real-time optimization of a cat cracker unit[J]. Computers & Chemical Engineering, 1997, 21(1/2): 887-892. |
13 | SankararaoB, GuptaK S. Multi-objective optimization of an industrial fluidized-bed catalytic cracking unit using two jumping gene adaptations of simulated annealing [J]. Computers and Chemical Engineering, 2007, 31: 1496-1515. |
14 | KasatB R, GuptaK S. Multi-objective optimization of an industrial fluidized-bed catalytic cracking unit using genetic algorithm with the jumping genes operator[J]. Computers and Chemical Engineering, 2003, 27: 1785-1800. |
15 | ChenC, YangB, YuanJ, et al. Establishment and solution of eight-lump kinetic model for FCC gasoline secondary reaction using particle swarm optimization[J]. Fuel, 2007, 86: 2325-2332. |
16 | WangY, WuL, YuanX. Multi-objective self-adaptive differential evolution with elitist archive and crowding entropy-based diversity measure[J]. Soft Computing, 2010, 14(3): 193-209. |
17 | 肖晓伟, 肖迪, 林锦国, 等. 多目标优化问题的研究概述[J]. 计算机应用研究, 2011 , 28(3): 805-808. |
XiaoX W, XiaoD, LinJ G, et al. Overview on multi-objective optimization problem research[J]. Application Research of Computers, 2011, 28(3): 805-808. | |
18 | SunJ, FengB, XuW. Particle swarm optimization with particles having quantum behavior[C]//Proc. of the IEEE Congress on Evolutionary Computation. Portland, USA: IEEE, 2004: 325-331. |
19 | WangY N, WuL H, YuanX. Multi-objective self-adaptive differential evolution with elitist archive and crowding entropy-based diversity measure[J]. Soft Computing, 2010, 14(3): 193-209. |
20 | CoelhoL D S. Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems[J]. Expert Systems with Applications, 2010, 37(2): 1676-1683. |
21 | ZitzlerE, LaumannsM, ThieleL. SPEA2: improving the strength pareto evolutionary algorithm[C]//Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, 2002: 95-100. |
22 | SierraM R, CoelloC A C. Multi-objective particle swarm optimizer: a survey of the state-of-the-art[J]. International Journal of Computation Intelligence Research, 2006, 22(3): 287-308. |
23 | DebK, PratapA, AgarwalS, et al. A fast and elitist multi-objective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. |
24 | 华长春, 王雅洁, 李军朋, 等. 基于NSGA-Ⅱ算法的高炉生产配料多目标优化模型建立[J]. 化工学报, 2016, 67(3): 1040-1047. |
HuaC C, WangY J, LiJ P, et al. Multi-objective optimization model for blast furnace production and ingredients based on NSGA-II algorithm[J]. CIESC Journal, 2016, 67(3): 1040-1047. | |
25 | YiJ, HuangD, FuS Y, et al. Multi-objective bacterial foraging optimization algorithm based on parallel cell entropy for aluminum electrolysis production process[J]. IEEE Transaction on Industrial Electronics, 2016, 63(4): 2488-2500. |
26 | 易军, 黄迪, 李太福, 等. 基于拥挤距离排序的铝电解多目标优化[J].仪器仪表学报, 2015, 36(11): 2502-2509. |
YiJ, HuangD, LiT F, et al. Optimization of aluminum electrolysis production process based on crowding distance sorting[J]. Chinese Journal of Scientific Instrument, 2015, 36(11): 2502-2509. | |
27 | 施展, 陈庆伟. 基于QPSO和拥挤距离排序的多目标量子粒子群优化算法[J]. 控制与决策, 2011, 26(4): 540-547. |
ShiZ, ChenQ W. Multi-objective quantum-behaved particle swarm optimization algorithm based on QPSO and crowding distance sorting[J]. Control and Decision, 2011, 26 (4): 540-547. | |
28 | DingS F, SuC Y, YuJ Z. An optimizing BP neural network algorithm based on genetic algorithm[J]. Artificial Intelligence Review, 2011, 36(2): 153-162. |
29 | 刘朝华, 王慧娟, 吴春笃, 等. 基于BP神经网络的脉冲放电等离子体氧化酸性橙Ⅱ影响因素分析[J]. 化工学报, 2012, 63 (10): 3190-3195. |
LiuC H, WangH J, WuC D, et al. Analysis of factors effecting acid orange 7 decoloration in pulsed discharge plasma system based on BP neural network mode[J]. CIESC Journal, 2012, 63(10): 3190-3195. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[3] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[4] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[5] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[6] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[7] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[8] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[9] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[10] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[11] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[12] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[13] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[14] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[15] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||