CIESC Journal ›› 2019, Vol. 70 ›› Issue (2): 730-735.DOI: 10.11949/j.issn.0438-1157.20181351
Previous Articles Next Articles
Rui MU1(),Gaoyang LE1,Huizhong YANG1,2()
Received:
2018-11-15
Revised:
2018-12-03
Online:
2019-02-05
Published:
2019-02-05
Contact:
Huizhong YANG
通讯作者:
杨慧中
作者简介:
<named-content content-type="corresp-name">穆瑞</named-content>(1994—),男,硕士研究生,<email>wsmurui@163.com</email>|杨慧中(1955—),女,博士,教授,<email>yhz_jn@163.com</email>
基金资助:
CLC Number:
Rui MU, Gaoyang LE, Huizhong YANG. Estimation method of dissolved gas quantity in COD determination based on O3/UV[J]. CIESC Journal, 2019, 70(2): 730-735.
穆瑞, 乐高杨, 杨慧中. 基于O3/UV法在线COD检测的气体溶解量估计方法[J]. 化工学报, 2019, 70(2): 730-735.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181351
模型 | 训练样本集 | 测试样本集 | ||
---|---|---|---|---|
RMSE | MAXE | RMSE | MAXE | |
PLS | 0.0483 | 0.41 | 0.0511 | 0.53 |
LSSVMs | 0.0382 | 0.34 | 0.0435 | 0.49 |
PLS-LSSVMs | 0.0138 | 0.21 | 0.0164 | 0.27 |
Table 1 Error analysis of different models on training and testing datasets
模型 | 训练样本集 | 测试样本集 | ||
---|---|---|---|---|
RMSE | MAXE | RMSE | MAXE | |
PLS | 0.0483 | 0.41 | 0.0511 | 0.53 |
LSSVMs | 0.0382 | 0.34 | 0.0435 | 0.49 |
PLS-LSSVMs | 0.0138 | 0.21 | 0.0164 | 0.27 |
模型 | 训练样本集 | 测试样本集 | ||
---|---|---|---|---|
RMSE | MAXE | RMSE | MAXE | |
PLS | 0.0151 | 0.26 | 0.0173 | 0.34 |
LSSVMs | 0.0106 | 0.18 | 0.0155 | 0.33 |
PLS-LSSVMs | 0.0092 | 0.12 | 0.0108 | 0.15 |
Table 2 Error analysis of different models on training and testing datasets
模型 | 训练样本集 | 测试样本集 | ||
---|---|---|---|---|
RMSE | MAXE | RMSE | MAXE | |
PLS | 0.0151 | 0.26 | 0.0173 | 0.34 |
LSSVMs | 0.0106 | 0.18 | 0.0155 | 0.33 |
PLS-LSSVMs | 0.0092 | 0.12 | 0.0108 | 0.15 |
COD标准值/(mg/L) | O3/UV | 国标法 | ||
---|---|---|---|---|
数值/(mg/L) | 相对误差/% | 数值/(mg/L) | 相对误差/% | |
30 | 31.26 | 1.26 | 28.3 | 1.7 |
90 | 92.06 | 2.06 | 86.7 | 3.3 |
120 | 123.77 | 3.77 | 116.1 | 3.9 |
150 | 154.15 | 4.15 | 145.2 | 4.8 |
Table 3 Comparison of COD test results
COD标准值/(mg/L) | O3/UV | 国标法 | ||
---|---|---|---|---|
数值/(mg/L) | 相对误差/% | 数值/(mg/L) | 相对误差/% | |
30 | 31.26 | 1.26 | 28.3 | 1.7 |
90 | 92.06 | 2.06 | 86.7 | 3.3 |
120 | 123.77 | 3.77 | 116.1 | 3.9 |
150 | 154.15 | 4.15 | 145.2 | 4.8 |
1 | 李名升, 张建辉, 罗海江, 等. “十一五”期间中国化学需氧量减排与水环境质量变化关联分析[J]. 生态环境学报, 2011, 20(3): 463-467. |
LiM S, ZhangJ H, LuoH J, et al. Relation between water quality and COD discharge in China in the Eleventh Five-Year Plan[J]. Ecology and Environmental Sciences, 2011, 20(3): 463-467. | |
2 | 中华人名共和国生态环境部. 水质化学需氧量的测定重铬酸盐法: HJ 828—2017[S]. 北京: 中国环境出版社, 2017. |
Ministry of Ecology and Environment of the People’s Republic of China. Water quality determination of the chemical oxygen demand Dichromate method: HJ 828—2017[S]. Beijing: China Environmental Press, 2017. | |
3 | 国家技术监督局. 水质高锰酸盐指数的测定: GB 11892—1989[S]. 北京: 中国标准出版社, 1991. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Water quality determination of permanganate index: GB 11892—1989[S]. Beijing: Standards Press of China, 1991. | |
4 | GrönroosA, KyllönenH, KorpijärviK, et al. Ultrasound assisted method to increase soluble chemical oxygen demand (SCOD) of sewage sludge for digestion[J]. Ultrasonics Sonochemistry, 2005, 12(1/2): 115-120. |
5 | 李文, 汪楷健, 杨守波, 等. 应用超声消解快速检测COD方法的实验研究[J]. 工业水处理, 2016, 36(6): 90-93. |
LiW, WangK J, YangS B, et al. Experimental research on the rapid detection method of chemical oxygen demand by ultrasonic assisted digestion technique[J] Industrial Water Treatment, 2016, 36(6): 90-93. | |
6 | BryceD W, IzquierdoA, De CastroM D L. Use of focused microwaves for expeditive shortening of sample pre-treatment: digestion and reduction procedures prior to selenium speciation as selenium(IV) or selenium(VI)[J]. Analyst, 1995, 120(120): 2171-2174. |
7 | 黄毅. 微波密封消解法测定CODCr值[J]. 上海环境科学, 1996, 15(5): 32-34. |
HuangY. Determination of CODCr using sealed vessel microwave digestion method[J]. Shanghai Environmental Sciences, 1996, 15(5): 32-34 | |
8 | 王照丽, 罗娅君, 李薇, 等. 微波消解法测定工业废水中的化学需氧量[J]. 环境科学与技术, 2016, (S1): 71-74. |
WangZ L, LuoY J, LiW, et al. Determination of COD in industrial wastewater with microwave digestion[J]. Environmental Science & Technology, 2016, (S1): 71-74. | |
9 | 杨泽玉, 胡涌刚. 化学发光-化学需氧量测定新方法[J]. 分析化学, 2003, 31(12): 1430-1432. |
YangZ Y, HuY G. A Novel Chemiluminescence method for the determination of chemical oxygen demand[J]. Chinese Journal of Analytical Chemistry, 2003, 31(12): 1430-1432. | |
10 | HueD T K, HashimotoS, NishikawaH. A 3-step chemiluminescence method for chemical oxygen demand measurement[J]. Analytical Sciences the International Journal of the Japan Society for Analytical Chemistry, 2017, 9: 5797-5805. |
11 | ZhengQ, ZhouB, BaiJ, et al. Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand[J]. Advanced Materials, 2010, 20(5): 1044-1049. |
12 | ZhaoH, JiangD, ZhangS, et al. Development of a direct photoelectrochemical method for determination of chemical oxygen demand[J]. Analytical Chemistry, 2015, 76(1): 155-160. |
13 | 汤哲人, 陈泉源, 邓东升, 等. 以黄铜矿作为颗粒三维电极的电Fenton氧化处理维尼纶废水中的COD研究[J]. 中国环境科学, 2017, 37(1): 95-101. |
TangZ R, ChenQ Y, DengD S, et al. COD of vinylon waste water oxidizing treatment by three dimensional electrode electricity fenton using brass copper grains[J] China Environmental Science, 2017, 37(1): 95-101. | |
14 | WibowoD, Ruslan, MaulidiyahM, et al. Determination of COD based on photoelectrocatalysis of FeTiO3.TiO2/Ti electrode[J]. IOP Conference Series: Materials Science and Engineering, 2017, 267(1): 012007 |
15 | JingT, ZhouY S, HaoQ L, et al. A nano-nickel electrochemical sensor for sensitive determination of chemical oxygen demand[J]. Analytical Methods, 2012, 4(4): 1155-1159. |
16 | KimI, TanakaH. Energy consumption for PPCPs removal by O3 and O3/UV[J]. Ozone Science & Engineering, 2011, 33(2): 150-157. |
17 | 董洪梅. O3/UV工艺对水中BDE47的去除效果的影响[J].中国环境科学, 2013, (S1):19-25. |
DongH M. Effect of ozone-UV technology on treatment of 2, 2’, 4, 4’-tetra BDE in aqueous medium[J]. China Environmental Science, 2013, (S1): 19-25. | |
18 | MertB K, ÖzgeS, YonarT, et al. Treatment of jewelry manufacturing effluent containing cyanide using ozone-based photochemical advanced oxidation processes[J]. Ozone Science & Engineering, 2014, 36(2): 196-205. |
19 | 张龙, 杨慧中. 基于臭氧协同紫外的COD在线检测装置[J]. 中国给水排水, 2014, 30(6): 89-91. |
ZhangL, YangH Z. COD detection device based on ozone coupled with UV[J]. China Water & Wastewater, 2014, 30(6): 89-91. | |
20 | 薛佩姣, 杨慧中. 多传感器集成的COD在线检测与补偿方法[J]. 传感器与微系统, 2015, 34(9): 135-137. |
XueP J, YangH Z. Online detection and compensation method of COD with multi-sensor integration[J]. Transducer and Microsystem Technologies, 2015, 34(9): 135-137. | |
21 | SuykensJ A K, VandewalleJ. Least squares support machineclassifiers[J]. Neural Processing Letters, 1999, 9(3): 293-300. |
22 | 杨小梅, 刘文琦, 杨俊. 基于分阶段的LSSVM发酵过程建模[J]. 化工学报, 2013, 64(9): 3262-3269. |
YangX M, LiuW Q, YangJ. LSSVM modeling for fermentation process based on dividing stages[J] CIESC Journal, 2013, 64(9): 3262-3269. | |
23 | 郑蓉建,潘丰. 基于PLS-LSSVM的谷氨酸发酵产物浓度预测建模[J]. 化工学报, 2017, 68(3): 976-983 |
ZhengR J, PanF. Prediction of product concentration in glutamate fermentation process using partial least squares and least square support vector machine[J]. CIESC Journal, 2017, 68(3): 976-983 | |
24 | 冯凯, 卢建刚, 陈金水. 基于最小二乘支持向量机的 MIMO线性参数变化模型辨识及预测控制[J]. 化工学报, 2015, (1): 197-205. |
FengK, LuJ G, ChenJ S. Identification and model predictive control of LPV models based on LS-SVM for MIMO system[J]. CIESC Journal, 2015, (1): 197-205. | |
25 | 欧阳爱国, 唐天义, 周鑫, 等. 最小二乘支持向量机结合中红外光谱测定甲醇柴油甲醇含量[J]. 发光学报, 2016, (10): 1253-1258. |
OuyangA G, TangT Y, ZhouX, et al. Methanol content determination in methanol diesel with mid infrared spectroscopy analysis using least square support vector machine[J]. Chinese Journal of Lumine Science, 2016, (10): 1253-1258 | |
26 | 张福东, 刘杰, 王智宏. 基于最小二乘支持向量机的油页岩含油率近红外光谱分析[J]. 高等学校化学学报, 2016, 37(10): 1792-1798. |
ZhangF D, LiuJ, WangZ H. Analysis of oil yield from oil shale minerals based on near-infrared spectroscopy with least squares support vector machines[J]. Chemical Journal of Chinese Universities, 2016, 37(10): 1792-1798. | |
27 | 张森, 石为人, 石欣, 等. 基于偏最小二乘回归和SVM的水质预测[J]. 计算机工程与应用, 2015, 51(15): 249-254. |
ZhangS, ShiW R, ShiX, et al. Water quality prediction based on partial least squares and support vector machine[J]. Computer Engineering and Applications, 2015, 51(15): 249-254. | |
28 | 李远华, 陶劲松, 李继庚, 等. 基于偏最小二乘法的纸张抗张强度预测模型[J]. 化工学报, 2014, 65(9): 3544-3551. |
LiY H, TaoJ S, LiJ G, et al. Building predicting model of paper tensile strength based on partial least squares approach[J] CIESC Journal, 2014, 65(9): 3544-3551. | |
29 | 李晋华, 张敏娟, 张德龙. 氧气A吸收带偏最小二乘基线拟合方法[J]. 中国激光, 2017, (8): 281-287. |
LiJ H, ZhangM J, ZhangD L. Baseline fitting of partial least squares for oxygen a abscorption band[J]. Chinese Journal of Lasers. 2017, (8): 281-287. | |
30 | 陶劲松, 杨亚帆, 李远华. 基于PLS和SVM的纸张抗张强度建模比较[J]. 华南理工大学学报(自然科学版), 2014, (7): 132-137. |
TaoJ S, YangY F, LiY H. Comparison of paper tensile strength prediction models based on PLS and SVM methods[J]. Journal of South China University of Technology(Natural Science Edition) , 2014, (7): 132-137. | |
31 | LeG, YangH, YuX. Improved UV/O3 method for measuring the chemical oxygen demand[J]. Water Science & Technology, 2018, 77(5): 1271-1279. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||