CIESC Journal ›› 2019, Vol. 70 ›› Issue (9): 3590-3600.DOI: 10.11949/0438-1157.20190162
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Xinghai YU1,2(),Qiliang LUO1,Jian PAN2,3,Yuqi HAN1,4,Qifeng ZHANG1
Received:
2019-02-27
Revised:
2019-05-08
Online:
2019-09-05
Published:
2019-09-05
Contact:
Xinghai YU
禹兴海1,2(),罗齐良1,潘剑2,3,韩玉琦1,4,张奇峰1
通讯作者:
禹兴海
作者简介:
禹兴海(1977—),男,博士,教授,基金资助:
CLC Number:
Xinghai YU, Qiliang LUO, Jian PAN, Yuqi HAN, Qifeng ZHANG. Preparation and properties of flexible supercapacitor based on biochar and solid gel-electrolyte[J]. CIESC Journal, 2019, 70(9): 3590-3600.
禹兴海, 罗齐良, 潘剑, 韩玉琦, 张奇峰. 一种生物炭基柔性固态超级电容器的制备及性能研究[J]. 化工学报, 2019, 70(9): 3590-3600.
Sample (m C∶m KOH) | BET surface, S BET/(m2·g-1) | Total volume in pores, V Total/(cm3·g-1) | DFT pore size/nm |
---|---|---|---|
1∶3 | 1228 | 0.49 | 38.7 |
1∶4 | 1176 | 0.48 | 38.7 |
1∶5 | 916 | 0.33 | 38.7 |
Table 1 Specific surface area and porosity parameters of biochar at different activated conditions.
Sample (m C∶m KOH) | BET surface, S BET/(m2·g-1) | Total volume in pores, V Total/(cm3·g-1) | DFT pore size/nm |
---|---|---|---|
1∶3 | 1228 | 0.49 | 38.7 |
1∶4 | 1176 | 0.48 | 38.7 |
1∶5 | 916 | 0.33 | 38.7 |
Fig.8 Long-term cycling performance of flexible capacitor at current density of 5.0 A·g-1 under 180° bending angle (Inset is charge-discharge curves of the last 20 cycles)
1 | Zhang Q F , Uchaker E , Candelaria S L , et al . Nanomaterials for energy conversion and storage[J]. Chem. Soc. Rev., 2013, 42(7): 3127-3171. |
2 | 刘明贤, 缪灵, 陆文静, 等 . 多孔碳材料的设计合成及其在能源存储与转换领域中的应用[J]. 科学通报, 2017, 62(6): 590-605. |
Liu M X , Miao L , Lu W J , et al . Porous carbon materials: design, synthesis and applications in energy storage and conversion devices[J]. Chin. Sci. Bull., 2017, 62(6): 590-605. | |
3 | Chen X L , Qiu L B , Peng H S , et al . Novel electric double-layer capacitor with a coaxial fiber structure[J]. Adv. Mater., 2013, 25(44): 6436-6441. |
4 | Beidaghi M , Gogotsi Y . Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors[J]. Energy & Environ. Sci., 2014, 7(3): 867-884. |
5 | Bae J , Song M K , Park Y J , et al . Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage[J]. Angew. Chem. Int. Ed., 2011, 50(7): 1683-1687. |
6 | Yan J , Qian W , Tong W , et al . Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities[J]. Adv. Energy. Mater., 2014, 4(4): 1300816. |
7 | Cheng Y W , Zhang H B , Lu S T , et al . Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes[J]. Nanoscale, 2013, 5(3): 1067-1073. |
8 | Kötz R , Carlen M . Principles and applications of electrochemical capacitors[J]. Electrochimica Acta, 2000, 45: 2483-2498. |
9 | Wang Y G , Song Y F , Xia Y Y . Electrochemical capacitors: mechanism, materials, systems, characterization and applications[J]. Chem. Soc. Rev., 2016, 45(21): 5925-5950. |
10 | Conway B E , Pell W G . Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices[J]. J.Solid.State.Electr., 2003, 7(9): 637-644. |
11 | Sharma P , Bhatti T S . A review on electrochemical double-layer capacitors[J]. Energy. Convers. Manage, 2010, 51(12): 2901-2912. |
12 | Lu Q , Chen J G , Xiao J Q . Nanostructured electrodes for high-performance pseudocapacitors[J]. Angew. Chem. Int. Ed., 2013, 52(7): 1882-1889. |
13 | Liu Q , Nayfeh M H , Yau S T . Brushed-on flexible supercapacitor sheets using a nanocomposite of polyaniline and carbon nanotubes[J]. J.Power. Sources, 2010, 195(21): 7480-7483. |
14 | Lv T , Yao Y , Li N , et al .Wearable fiber-shaped energy conversion and storage devices based on aligned carbon nanotubes[J]. Nano Today, 2016, 11(5): 644-660. |
15 | Meng C Z , Liu C H , Chen L Z , et al . Highly flexible and all-solid-state paper-like polymer supercapacitors[J]. Nano Lett., 2010, 10(40): 25-4031. |
16 | 李宁, 陈涛 . 石墨烯基电极材料在柔性全固态超级电容器中的研究进展[J]. 应用化学, 2018, 35(3): 259-271. |
Li N , Chen T . Recent progress on graphene-based flexible all-solid-state supercapacitors[J]. J. Chin. Appl. Chem., 2018, 35 (3): 259-271. | |
17 | 彭旭, 李典奇, 谢毅, 等 . 二维石墨烯和准二维类石墨烯在全固态柔性超级电容器中的应用[J]. 科学通报, 2013, 58(Z2): 2886-2894. |
Peng X , Li D Q , Xie Y , et al . Two-dimensional graphene/quasi-two-dimensional graphene analogues for flexible supercapacitor in all-solid-state[J]. Chin. Sci. Bull., 2013, 58(Z2): 2886-2894. | |
18 | 朱红艳, 赵建国, 庞明俊, 等 . 石墨烯/δ-MnO2复合材料的制备及其超级电容器性能[J]. 化工学报, 2017, 68(12): 4824-4832. |
Zhu H Y , Zhao J G , Pang M J , et al . Preparation of graphene/δ-MnO2 composites and supercapacitor performance[J]. CIESC Journal, 2017, 68(12): 4824-4832. | |
19 | Cui Y , Chai J , Du H , et al . Facile and reliable in situ polymerization of poly(ethyl cyanoacrylate)-based polymer electrolytes toward flexible lithium batteries[J]. ACS Appl. Mater. Interfaces, 2017, 9(10): 8737-8741. |
20 | Cheng X , Jian P , Yang Z , et al . Gel polymer electrolytes for electrochemical energy storage[J]. Adv. Energy Mater., 2018, 8(7): 1702184. |
21 | Arya A , Sharma A L . Polymer electrolytes for lithium ion batteries: a critical study[J]. Ionics, 2017, 23(3): 497-540. |
22 | Dagousset L , Pognon G , Nguyen G T M , et al . Self-standing gel polymer electrolyte for improving supercapacitor thermal and electrochemical stability[J]. J. Power. Sources, 2018, 391(1): 86-93. |
23 | Wang Y , Xia Y . Recent progress in supercapacitors: from materials design to system construction[J]. Adv. Mater., 2013, 25(37): 5336-5342. |
24 | Hsu Y K , Chen Y C , Lin Y G , et al . High-cell-voltage supercapacitor of carbon nanotube/carbon cloth operating in neutral aqueous solution[J]. J. Mate. Chem., 2012, 22(8): 3383-3390. |
25 | Cui X , Lv R , Sagar R U R , et al . Reduced graphene oxide/carbon nanotube hybrid film as high performance negative electrode for supercapacitor[J]. Electrochimica Acta, 2015, 169: 342-350. |
26 | 胡立鹃, 吴峰, 彭善枝, 等 . 生物质活性炭的制备及应用进展[J]. 化学通报, 2016, 79(3): 205-212. |
Hu L J , Wu F , Peng S Z , et al . Recent progress in preparation and utilization of biomass-based activated carbons[J]. Chem. Bull., 2016, 79(3): 205-212. | |
27 | Goldfarb J L , Dou G , Salari M , et al . Biomass-based fuels and activated carbon electrode materials: an integrated approach to green energy systems[J]. ACS Sustain. Chem. Eng., 2017, 5(4): 3046-3054. |
28 | Gu X , Wang Y , Chao L , et al . Microporous bamboo biochar for lithium-sulfur batteries[J]. Nano Res., 2015, 8(1): 129-139. |
29 | Liu Y , Shi Z , Gao Y , et al . Biomass-swelling assisted synthesis of hierarchical porous carbon fibers for supercapacitor electrodes[J]. ACS Appl. Mater. Interfaces, 2016, 8(42): 28283-28290. |
30 | Hou J H , Cao C B , Ma J H , et al . Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors[J]. ACS Nano, 2015, 9(3): 2556-2564. |
31 | Yu P F , Liang Y R , Liu Y L , et al . Rational synthesis of highly porous carbon from waste bagasse for advanced supercapacitor application[J]. ACS Sustain. Chem. Eng., 2018, 6(11): 15325-15332. |
32 | Fu P , Hu S , Sun L S , et al . Structural evolution of maize stalk particles during pyrolysis[J]. Bioresource Technol., 2009, 100(5): 4877-4883. |
33 | Jia M , Fang W , Xin J , et al . Metal ion-oxytetracycline interactions on maize straw biochar pyrolyzed at different temperatures[J]. Chem. Eng. J., 2016, 304(15): 934-940. |
34 | Yang G , Yun S Z , Min Q , et al . Chemical activation of carbon nano-onions for high-rate supercapacitor electrodes[J]. Carbon, 2013, 51: 52-58. |
35 | Wang J , Kaskel S . KOH activation of carbon-based materials for energy storage[J]. J. Mate. Chem., 2012, 22(45): 23710-23725. |
36 | Zhu H , Jia Z , Chen Y , et al . Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir[J]. Nano Lett., 2013, 13(7): 3093-3100. |
37 | Liang Q H , Ye L , Huang Z H , et al . A honeycomb-like porous carbon derived from pomelo peel for use in high-performance supercapacitors[J]. Nanoscale, 2014, 6(22): 13831-13837. |
38 | Gong Y , Li D , Luo C , et al . Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors[J]. Green Chem., 2017, 17(19): 4132-4140. |
39 | Hao C , Liu D , Shen Z , et al . Functional biomass carbons with hierarchical porous structure for supercapacitor electrode materials[J]. Electrochimica Acta, 2015, 180: 241-251. |
40 | Qu J Y , Geng C , Lv S Y , et al . Nitrogen, oxygen and phosphorus decorated porous carbons derived from shrimp shells for supercapacitors[J]. Electrochimica Acta, 2015, 176: 982-988. |
41 | Gao S Y , Chen Y L , Fan H , et al . Large scale production of biomass-derived N-doped porous carbon spheres for oxygen reduction and supercapacitors[J]. J. Mater. Chem. A, 2014, 2(10): 3317-3324. |
42 | Xu H H , Hu X L , Sun Y M , et al . Flexible fiber-shaped supercapacitors based on hierarchically nanostructured composite electrodes[J]. Nano Research, 2015, 8(4): 1148-1158. |
43 | Chen S , Zhu J W , Wu X , et al . Graphene oxide-MnO2 nanocomposites for supercapacitors[J]. ACS Nano, 2010, 4(5): 6212-6218. |
44 | Tiruye G A , Muñoz-Torrero D , Thomas B , et al . Functional porous carbon nanospheres from sustainable precursors for high performance supercapacitors[J]. J.Mater. Chem. A, 2017, 5(31): 16263-16272. |
45 | Ma H Y , Li C , Zhang M , et al . Graphene oxide induced hydrothermal carbonization of egg proteins for high-performance supercapacitors[J]. J. |
Mate . Chem. A , 2017, 5(32): 17040-17047. | |
46 | Wu C H , Deng S X , Wang H , et al . Preparation of novel three-dimensional NiO/ultrathin derived graphene hybrid for supercapacitor applications[J]. ACS Appl. Mate. Interfaces, 2014, 6(2): 1106-1112. |
[1] | Xiaoxiong FAN, Lifang HAO, Chuigang FAN, Songgeng LI. Study on the catalytic denitrification performance of low-temperature NH3-SCR over LaMnO3/biochar catalyst [J]. CIESC Journal, 2023, 74(9): 3821-3830. |
[2] | Jing LI, Conghao SHEN, Daliang GUO, Jing LI, Lizheng SHA, Xin TONG. Research progress in the application of lignin-based carbon fiber composite materials in energy storage components [J]. CIESC Journal, 2023, 74(6): 2322-2334. |
[3] | Dong XU, Du TIAN, Long CHEN, Yu ZHANG, Qingliang YOU, Chenglong HU, Shaoyun CHEN, Jian CHEN. Preparation and electrochemical energy storage of polyaniline/manganese dioxide/polypyrrole composite nanospheres [J]. CIESC Journal, 2023, 74(3): 1379-1389. |
[4] | Jiahao JIANG, Xiaole HUANG, Jiyun REN, Zhengrong ZHU, Lei DENG, Defu CHE. Qualitative and quantitative study on Pb2+ adsorption by biochar in solution [J]. CIESC Journal, 2023, 74(2): 830-842. |
[5] | Jianxin CHEN, Ruijie ZHU, Nan SHENG, Chunyu ZHU, Zhonghao RAO. Preparation of cellulose-derived biomass porous carbon and its supercapacitor performance [J]. CIESC Journal, 2022, 73(9): 4194-4206. |
[6] | Renjie GU, Jiawei ZHANG, Xueyang JIN, Lixiong WEN. Synthesis of nickel-cobalt hydroxide composites as supercapacitor materials by micro-impinging stream reactors and their performance study [J]. CIESC Journal, 2022, 73(8): 3749-3757. |
[7] | Xue’an LIU, Liyi TANG, Jian QIN, Dajiang TANG, Zhangfa TONG, Huiying QU. Preparation of carbon nanotube bridged porous carbon by Ni/Co-ZIF-8 pyrolysis and its application to supercapacitors [J]. CIESC Journal, 2022, 73(7): 3287-3297. |
[8] | Guanyi CHEN, Tujun TONG, Rui LI, Yanshan WANG, Beibei YAN, Ning LI, Li'an HOU. Influence of pyrolysis time on sludge-derived biochar performance for peroxymonosulfate activation [J]. CIESC Journal, 2022, 73(5): 2111-2119. |
[9] | Xiqiang ZHAO, Jian ZHANG, Shuang SUN, Wenlong WANG, Yanpeng MAO, Jing SUN, Jinglong LIU, Zhanlong SONG. Study on the performance of biochar modified microspheres to remove inorganic phosphorus from chemical wastewater [J]. CIESC Journal, 2022, 73(5): 2158-2173. |
[10] | Kun QIN, Jiale LI, Zhanghong WANG, Huiyan ZHANG. Biochars derived from Ca-rich mushroom residue for phosphorus-containing wastewater treatment [J]. CIESC Journal, 2022, 73(11): 5263-5274. |
[11] | Tingting WANG, Xi ZENG, Zhennan HAN, Fang WANG, Peng WU, Guangwen XU. Reaction characteristics and kinetics of biomass char-steam gasification in micro-fluidized bed reaction analyzer [J]. CIESC Journal, 2022, 73(1): 294-307. |
[12] | JIAO Shuai, YANG Lei, WU Tingting, LI Hongqiang, LYU Huihong, HE Xiaojun. Synthesis of nitrogen doped hierarchically porous carbon nanosheets for supercapacitor by mixed salt template [J]. CIESC Journal, 2021, 72(5): 2869-2877. |
[13] | HUANG Zhongyi, SHI Liubin, FENG Yajun, LI Lishuo. Effect of ionic liquid pretreatment on eucalyptus char structure and its reactivity [J]. CIESC Journal, 2021, 72(4): 2267-2275. |
[14] | Zhenzhen YE, Xinqi CHEN, Jian WANG, Bofan LI, Chaojie CUI, Gang ZHANG, Luming QIAN, Ying JIN, Weizhong QIAN. Evaluation of aging performance under high temperature of ionic liquid-based pouch supercapacitor [J]. CIESC Journal, 2021, 72(12): 6351-6360. |
[15] | Yu WANG,Guangwei YU,Ruqing JIANG,Jiajia LIN,Yin WANG. Effect of particle size on phosphorus and heavy metals during the preparation of biochar from food waste biogas residue [J]. CIESC Journal, 2021, 72(10): 5344-5353. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 907
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 789
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||