CIESC Journal ›› 2019, Vol. 70 ›› Issue (9): 3582-3589.DOI: 10.11949/0438-1157.20190216
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Jie XU(),Xin CHEN(
),Lingling WANG
Received:
2019-03-11
Revised:
2019-05-20
Online:
2019-09-05
Published:
2019-09-05
Contact:
Xin CHEN
通讯作者:
陈新
作者简介:
徐杰(1994—),男,硕士研究生,基金资助:
CLC Number:
Jie XU, Xin CHEN, Lingling WANG. An environmentally friendly activated carbon supercapacitor electrode material preparation with expired sliced bread[J]. CIESC Journal, 2019, 70(9): 3582-3589.
徐杰, 陈新, 王玲玲. 用过期切片面包制备环保超级电容器活性炭电极材料[J]. 化工学报, 2019, 70(9): 3582-3589.
Element | Mass fraction/% | Atom fraction/% | Error/% |
---|---|---|---|
C | 79.40 | 83.12 | 9.3 |
N | 6.16 | 5.53 | 1.8 |
O | 14.43 | 11.34 | 2.5 |
Table 1 EDS elemental analysis of expired bread-based activated carbon
Element | Mass fraction/% | Atom fraction/% | Error/% |
---|---|---|---|
C | 79.40 | 83.12 | 9.3 |
N | 6.16 | 5.53 | 1.8 |
O | 14.43 | 11.34 | 2.5 |
Fig.6 CV curves at different scan rates(a); GCD curves at different current densities(b); specific capacitance at different current densities (c) and cycling life test at 5 A·g-1 of EBAC(d)
原材料 | BET比表面积/(m2·g-1) | 电解液 | 电流密度/(A·g-1) | 比电容/(F·g-1) | 参考文献 |
---|---|---|---|---|---|
大豆根 | 2143 | 3 mol·L-1 KOH | 0.5 | 276 | [ |
玉米秸秆 | 2350 | 3 mol·L-1 KOH | 1 | 140 | [ |
向日葵秆 | 1505 | 6 mol·L-1 KOH | 2 | 365 | [ |
银杏树叶 | 906 | 1 mol·L-1 KOH | 0.2 | 345 | [ |
莲花叶 | 2488 | 6 mol·L-1 KOH | 1 | 379 | [ |
榆花 | 2049 | 6 mol·L-1 KOH | 1 | 275 | [ |
番茄 | 2342 | 6 mol·L-1 KOH | 0.005 | 335 | [ |
紫藤种子 | 2000 | 1 mol·L-1 H2SO4 | 0.5 | 110 | [ |
爆米花 | 1212 | 6 mol·L-1 KOH | 0.2 | 214 | [ |
馒头 | 1834 | 6 mol·L-1 KOH | 2 | 278 | [ |
印度烤饼 | 1413 | 1 mol·L-1 H2SO4 | 1.7 | 381 | [ |
过期切片面包 | 1155 | 3 mol·L-1 KOH | 0.5 | 352 | 本文 |
Table 2 Performance comparison of EBAC with other biomass activated carbon
原材料 | BET比表面积/(m2·g-1) | 电解液 | 电流密度/(A·g-1) | 比电容/(F·g-1) | 参考文献 |
---|---|---|---|---|---|
大豆根 | 2143 | 3 mol·L-1 KOH | 0.5 | 276 | [ |
玉米秸秆 | 2350 | 3 mol·L-1 KOH | 1 | 140 | [ |
向日葵秆 | 1505 | 6 mol·L-1 KOH | 2 | 365 | [ |
银杏树叶 | 906 | 1 mol·L-1 KOH | 0.2 | 345 | [ |
莲花叶 | 2488 | 6 mol·L-1 KOH | 1 | 379 | [ |
榆花 | 2049 | 6 mol·L-1 KOH | 1 | 275 | [ |
番茄 | 2342 | 6 mol·L-1 KOH | 0.005 | 335 | [ |
紫藤种子 | 2000 | 1 mol·L-1 H2SO4 | 0.5 | 110 | [ |
爆米花 | 1212 | 6 mol·L-1 KOH | 0.2 | 214 | [ |
馒头 | 1834 | 6 mol·L-1 KOH | 2 | 278 | [ |
印度烤饼 | 1413 | 1 mol·L-1 H2SO4 | 1.7 | 381 | [ |
过期切片面包 | 1155 | 3 mol·L-1 KOH | 0.5 | 352 | 本文 |
1 | Gao M R , Xu Y F , Jiang J , et al . Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices[J]. Chem. Soc. Rev., 2013, 42(7): 2986-3017. |
2 | Cao H L , Wang X , Chen X , et al . Hollow cubic double layer structured Cu7S4/NiS nanocomposites for high-performance supercapacitors[J]. J.Mater. Chem. A, 2017, 5(39): 20729-20736. |
3 | Gu W , Yushin G . Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene[J]. Wires Energy Environ., 2014, 3(5): 424-473. |
4 | Zhang L L , Zhao X S . Carbon-based materials as supercapacitor electrodes[J]. Chem. Soc. Rev., 2009, 38(9): 2520-2531. |
5 | Biswal M , Banerjee A , Deo M , et al . From dead leaves to high energy density supercapacitors[J]. Energy Environ. Sci., 2013, 6(4): 1249-1259. |
6 | 郝品 . 可再生资源制备的碳气凝胶及其复合电极材料的电化学性能研究[D]. 济南: 山东大学, 2015. |
Hao P . Electrochemical properties of carbon aerogels prepared from renewable resources and their composite electrode materials[D]. Jinan: Shandong University, 2015. | |
7 | Zhao S , Wang C Y , Chen M M , et al . Potato starch-based activated carbon spheres as electrode material for electrochemical capacitor[J]. J. Phys. Chem. Solids, 2009, 70(9): 1256-1260. |
8 | Teng H , Yeh T S , Hsu L Y . Preparation of activated carbon from bituminous coal with phosphoric acid activation[J]. Carbon, 1998, 36(9): 1387-1395. |
9 | Wang T H , Tan S T , Liang C . Preparation and characterization of activated carbon from wood via microwave-induced ZnCl2 activation[J]. Carbon, 2009, 47(7): 1880-1883. |
10 | Volperts A , Dobele G , Zhurinsh A , et al . Wood-based activated carbons for supercapacitor electrodes with a sulfuric acid electrolyte[J]. New Carbon Mater., 2017, 32(4): 319-326. |
11 | Guan T T , Zhao J H , Zhang G L , et al . Insight into controllability and predictability of pore structures in pitch-based activated carbons[J]. Micropor. Mesopor. Mater., 2018, 271: 118-127. |
12 | Yan S , Lin J J , Liu P , et al . Preparation of nitrogen-doped porous carbons for high-performance supercapacitor using biomass of waste lotus stems[J]. RSC Adv., 2018, 8(13): 6806-6813. |
13 | Guo N N , Li M , Wang Y , et al . Soybean root-derived hierarchical porous carbon as electrode material for high-performance supercapacitors in ionic liquids[J]. ACS Appl. Mater. Inter., 2016, 8(49): 33626-33634. |
14 | Yu K F , Zhu H , Qi H , et al . High surface area carbon materials derived from corn stalk core as electrode for supercapacitor[J]. Diam. Relat. Mater., 2018, 88: 18-22. |
15 | Chen H , Yu F , Wang G , et al . Nitrogen and sulfur self-doped activated carbon directly derived from elm flower for high-performance supercapacitors[J]. ACS Omega, 2018, 3(4): 4724-4732. |
16 | Awasthi G P , Bhattarai D P , Maharjan B , et al . Synthesis and characterizations of activated carbon from Wisteria sinensis seeds biomass for energy storage applications[J]. J. Ind. Eng. Chem., 2019, 72: 265-272. |
17 | 梁听, 谌春林, 李星 . 爆米花衍生氮掺杂纳米碳的制备及其电化学性能研究[J]. 宁波大学学报(理工版), 2017, 30(3): 60-66. |
Liang T , Chen C L , Li X . Preparation and electrochemical properties of nitrogen-doped carbon nanoparticles derived from popcorn[J]. J. Ningbo Univ. (NSEE), 2017, 30(3): 60-66. | |
18 | Zhan C Z , Yu X L , Liang Q H , et al . Flour food waste derived activated carbon for high-performance supercapacitors[J]. RSC Adv., 2016, 6(92): 89391-89396. |
19 | Kesavan T , Partheeban T , Vivekanantha M , et al . Hierarchical nanoporous activated carbon as potential electrode materials for high performance electrochemical supercapacitor[J]. Micropor. Mesopor. Mater., 2019, 274: 236-244. |
20 | Han Y , Shen N , Zhang S , et al . Fish gill-derived activated carbon for supercapacitor application[J]. J. Alloy. Compd., 2017, 694: 636-642. |
21 | Karnan M , Subramani K , Sudhan N , et al . Aloe vera derived activated high-surface-area carbon for flexible and high-energy supercapacitors[J]. ACS Appl. Mater. Inter., 2016, 8(51): 35191-35202. |
22 | 张佳佳 . 热重分析法同时测定粮食中主要成分含量[D]. 郑州: 河南工业大学, 2017. |
Zhang J J . Simultaneous determination of main components in grain by thermogravimetric analysis[D]. Zhengzhou: Henan University of Technology, 2017. | |
23 | Su X L , Jiang S , Zheng G P , et al . High-performance supercapacitors based on porous activated carbons from cattail wool[J]. J. Mater. Sci., 2018, 53(12): 9191-9205. |
24 | Ahmed S , Ahmed A , Rafat M . Supercapacitor performance of activated carbon derived from rotten carrot in aqueous, organic and ionic liquid based electrolytes[J]. J. Saudi Chem. Soc., 2018, 22(8): 993-1002. |
25 | 周王帆, 陈新, 曹红亮, 等 . 法国梧桐枯叶基活性炭的制备及其在超级电容器中的应用[J]. 化工学报, 2017, 68(7): 2918-2924. |
Zhou W F , Chen X , Cao H L , et al . Preparation of platanus leaf-based activated carbon and its application to supercapacitors[J]. CIESC Journal, 2017, 68(7): 2918-2924. | |
26 | Sivachidambaram M , Vijaya J J , Kennedy L J , et al . Preparation and characterization of activated carbon derived from the Borassus flabellifer flower as an electrode material for supercapacitor applications[J]. New J. Chem., 2017, 41(10): 3939-3949. |
27 | Peng C , Yan X B , Wang R T , et al . Promising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodes[J]. Electrochim. Acta, 2013, 87: 401-408. |
28 | Wang X D , Yun S N , Fang W , et al . Layer-stacking activated carbon derived from sunflower stalk as electrode materials for high-performance supercapacitors[J]. ACS Sustainable Chem. Eng., 2018, 6(9): 11397-11407. |
29 | Qu S S , Wan J F , Dai C C , et al . Promising as high-performance supercapacitor electrode materials porous carbons derived from biological lotus leaf[J]. J. Alloy. Compd., 2018, 751: 107-116. |
30 | Li Y T , Pi Y T , Lu L M , et al . Hierarchical porous active carbon from fallen leaves by synergy of K2CO3 and their supercapacitor performance[J]. J. Power Sources, 2015, 299: 519-528. |
31 | Wang R T , Wang P Y , Yan X B , et al . Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO2 capture performance[J]. ACS Appl. Mater. Inter., 2012, 4(11): 5800-5806. |
32 | Xia R Y , Zhou J C , Wu X H , et al . Epipremnum aureum derived porous carbon for high-performance supercapacitors[J]. Mater. Lett., 2018, 216: 158-161. |
33 | Guo N N , Li M , Sun X K , et al . Tremella derived ultrahigh specific surface area activated carbon for high performance supercapacitor[J]. Mater. Chem. Phys., 2017, 201: 399-407. |
34 | Wei X J , Li Y B , Gao S Y . Biomass-derived interconnected carbon nanoring electrochemical capacitors with high performance in both strongly acidic and alkaline electrolytes[J]. J. Mater. Chem. A, 2017, 5(1): 181-188. |
35 | Gu W T , Sevilla M , Magasinski A , et al . Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors: a case study for pseudocapacitance detection[J]. Energy Environ. Sci., 2013, 6(8): 2465-2476. |
[1] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[2] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[3] | Longyi LYU, Wenbo JI, Muda HAN, Weiguang LI, Wenfang GAO, Xiaoyang LIU, Li SUN, Pengfei WANG, Zhijun REN, Guangming ZHANG. Enhanced anaerobic removal of halogenated organic pollutants by iron-based conductive materials: research progress and future perspectives [J]. CIESC Journal, 2023, 74(8): 3193-3202. |
[4] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[5] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[6] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[7] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[8] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[9] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[10] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[11] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[12] | Maolin DONG, Lidong CHEN, Liulian HUANG, Weibing WU, Hongqi DAI, Huiyang BIAN. Research progress in preparation of lignonanocellulose by acid hydrotropes and their functional applications [J]. CIESC Journal, 2023, 74(6): 2281-2295. |
[13] | Jing LI, Conghao SHEN, Daliang GUO, Jing LI, Lizheng SHA, Xin TONG. Research progress in the application of lignin-based carbon fiber composite materials in energy storage components [J]. CIESC Journal, 2023, 74(6): 2322-2334. |
[14] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[15] | Xu GUO, Yongzheng ZHANG, Houbing XIA, Na YANG, Zhenzhen ZHU, Jingyao QI. Research progress in the removal of water pollutants by carbon-based materials via electrooxidation [J]. CIESC Journal, 2023, 74(5): 1862-1874. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 294
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 488
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||