CIESC Journal ›› 2021, Vol. 72 ›› Issue (12): 6351-6360.DOI: 10.11949/0438-1157.20211181
• Energy and environmental engineering • Previous Articles Next Articles
Zhenzhen YE1(),Xinqi CHEN1,Jian WANG1,Bofan LI1,Chaojie CUI1(),Gang ZHANG2,Luming QIAN2,Ying JIN1,2,Weizhong QIAN1()
Received:
2021-08-17
Revised:
2021-10-09
Online:
2021-12-22
Published:
2021-12-05
Contact:
Chaojie CUI,Weizhong QIAN
叶珍珍1(),陈鑫祺1,汪剑1,李博凡1,崔超婕1(),张刚2,钱陆明2,金鹰1,2,骞伟中1()
通讯作者:
崔超婕,骞伟中
作者简介:
叶珍珍(1990—),女,研究助理,基金资助:
CLC Number:
Zhenzhen YE, Xinqi CHEN, Jian WANG, Bofan LI, Chaojie CUI, Gang ZHANG, Luming QIAN, Ying JIN, Weizhong QIAN. Evaluation of aging performance under high temperature of ionic liquid-based pouch supercapacitor[J]. CIESC Journal, 2021, 72(12): 6351-6360.
叶珍珍, 陈鑫祺, 汪剑, 李博凡, 崔超婕, 张刚, 钱陆明, 金鹰, 骞伟中. 离子液体型超级电容器软包高温老化性能评测研究[J]. 化工学报, 2021, 72(12): 6351-6360.
Add to citation manager EndNote|Ris|BibTeX
Fig.1 Basic characterization of mesoporous carbon. Low (a) and high (b) magnification SEM images of the material; Nitrogen absorption and desorption curves (c) and pore size distribution (d) of the material
Fig.2 Optical photograph of 3D through-hole aluminum foam current collector (a); Mesoporous carbon and aluminum foam composite electrode (b); Adhesion of mesoporous carbon particles on the protuberant surface of aluminum foam (c)
Fig.3 Basic electrochemical tests of mesoporous carbon-EMIMBF4-Al foam system. CV curves (a); EIS spectra (b); Constant current charge-discharge curve (c) and constant current-constant voltage charge-discharge curve (d)
Fig.4 Basic electrochemical tests of mesoporous carbon-TEABF4/ACN-Al foam system. CV curve (a); EIS spectra (b); Constant current charge-discharge curve (c) and constant current - constant voltage charge-discharge curve (d)
Fig.5 Long cycling test of mesoporous carbon-EMIMBF4-Al foam system at high temperature. Constant current charge-discharge curves (a) and constant current-constant voltage charge-discharge curves (b); EIS spectra (c); CV curves (d)
Fig.6 Long cycling test of mesoporous carbon-TEABF4/ACN-Al foam system at high temperature. Constant current charge-discharge curves (a) and constant current-constant voltage charge-discharge curves (b); EIS spectra (c); CV curves (d)
Fig.7 Comparison of high temperature aging performance between EMIMBF4 and TEABF4/ACN systems. Comparison of 30 ms voltage drop of devices (a); Comparison of 30 ms resistance values (b) and ratio of resistance change (c); Comparison of the ratio of the specific capacitance change by the constant current charge-discharge mode (d) and the constant current-constant voltage charge-discharge mode (e)
Fig.9 Comparison of energy density and power density of mesoporous carbon-EMIMBF4-Al foam and mesoporous carbon-TEABF4/ACN-Al foam before (a) and after (b) high temperature aging; The changing trend of energy density and power density of EMIMBF4 pouch (c) and TEABF4/ACN pouch (d) with high temperature aging
1 | Kötz R, Carlen M. Principles and applications of electrochemical capacitors[J]. Electrochimica Acta, 2000, 45(15/16): 2483-2498. |
2 | Winter M, Brodd R J. What are batteries, fuel cells, and supercapacitors? [J]. ChemInform, 2004, 35(50): 4245-4270. |
3 | Inagaki M, Konno H, Tanaike O. Carbon materials for electrochemical capacitors[J]. Journal of Power Sources, 2010, 195(24): 7880-7903. |
4 | 郑超, 李林艳, 陈雪丹, 等. 超级电容器百篇论文点评(2017.7.1—2017.12.15)[J]. 储能科学与技术, 2018, 7(1): 20-36. |
Zheng C, Li L Y, Chen X D, et al. Review of selected 100 recent papers for supercapacitors(Jul. 1, 2017 to Dec. 15, 2017)[J]. Energy Storage Science and Technology, 2018, 7(1): 20-36. | |
5 | 时志强, 陈明鸣, 赵朔, 等. 新型微晶炭的结构与电化学电容特性[J]. 物理化学学报, 2008, 24(2): 237-242. |
Shi Z Q, Chen M M, Zhao S, et al. Structure and electrochemical capacitive behavior of novel crystallite carbon[J]. Acta Physico-Chimica Sinica, 2008, 24(2): 237-242. | |
6 | Ruch P W, Cericola D, Foelske A, et al. A comparison of the aging of electrochemical double layer capacitors with acetonitrile and propylene carbonate-based electrolytes at elevated voltages[J]. Electrochimica Acta, 2010, 55(7): 2352-2357. |
7 | Ruch P W, Cericola D, Foelske-Schmitz A, et al. Aging of electrochemical double layer capacitors with acetonitrile-based electrolyte at elevated voltages[J]. Electrochimica Acta, 2010, 55(15): 4412-4420. |
8 | 张莉, 时红雷. 超级电容器的老化趋势分析[J]. 电子测量与仪器学报, 2018, 32(7): 187-191. |
Zhang L, Shi H L. Aging tendency Investigation of supercapacitor[J]. Journal of Electronic Measurement and Instrumentation, 2018, 32(7): 187-191. | |
9 | 顾帅, 韦莉, 张逸成, 等. 超级电容器老化特征与寿命测试研究展望[J]. 中国电机工程学报, 2013, 33(21): 145-153, 204. |
Gu S, Wei L, Zhang Y C, et al. Prospects of ageing characteristic and life test research on supercapacitors[J]. Proceedings of the CSEE, 2013, 33(21): 145-153, 204. | |
10 | 于金山, 苏展, 裴锋, 等. 超级电容器寿命预测的研究进展[J]. 电镀与精饰, 2020, 42(12): 26-31. |
Yu J S, Su Z, Pei F, et al. Research progress on life prediction of supercapacitors[J]. Plating & Finishing, 2020, 42(12): 26-31. | |
11 | 伍世嘉, 王超, 张丽田, 等. 恒功率充放电条件下的双电层超级电容器循环性能研究[J]. 广东电力, 2020, 33(1): 9-16. |
Wu S J, Wang C, Zhang L T, et al. Study on cycle performance of electrical double layer capacitors under constant power charging and discharging conditions[J]. Guangdong Electric Power, 2020, 33(1): 9-16. | |
12 | Ye L, Liang Q H, Huang Z H, et al. A supercapacitor constructed with a partially graphitized porous carbon and its performance over a wide working temperature range[J]. Journal of Materials Chemistry A, 2015, 3(37): 18860-18866. |
13 | Hung K, Masarapu C, Ko T, et al. Wide-temperature range operation supercapacitors from nanostructured activated carbon fabric[J]. Journal of Power Sources, 2009, 193(2): 944-949. |
14 | Liu W W, Yan X B, Lang J W, et al. Effects of concentration and temperature of EMIMBF4/acetonitrile electrolyte on the supercapacitive behavior of graphene nanosheets[J]. Journal of Materials Chemistry, 2012, 22(18): 8853. |
15 | Tian J R, Cui C J, Xie Q, et al. EMIMBF4-GBL binary electrolyte working at -70℃ and 3.7 V for a high performance graphene-based capacitor[J]. Journal of Materials Chemistry A, 2018, 6(8): 3593-3601. |
16 | Lewandowski A, Olejniczak A. N-methyl-N-propylpiperidinium bis(trifluoromethanesulphonyl)imide as an electrolyte for carbon-based double-layer capacitors[J]. Journal of Power Sources, 2007, 172(1): 487-492. |
17 | Yuyama K, Masuda G, Yoshida H, et al. Ionic liquids containing the tetrafluoroborate anion have the best performance and stability for electric double layer capacitor applications[J]. Journal of Power Sources, 2006, 162(2): 1401-1408. |
18 | Balducci A, Dugas R, Taberna P L, et al. High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte[J]. Journal of Power Sources, 2007, 165(2): 922-927. |
19 | Galiński M, Lewandowski A, Stępniak I. Ionic liquids as electrolytes[J]. Electrochimica Acta, 2006, 51(26): 5567-5580. |
20 | Armand M, Endres F, MacFarlane D R, et al. Ionic-liquid materials for the electrochemical challenges of the future[J]. Nature Materials, 2009, 8(8): 621-629. |
21 | Cui C, Qian W, Yu Y, et al. Highly electroconductive mesoporous graphene nanofibers and their capacitance performance at 4 V[J]. Journal of the American Chemical Society, 2014, 136(6): 2256-2259. |
22 | Li J, Wang N, Tian J R, et al. Cross-coupled macro-mesoporous carbon network toward record high energy-power density supercapacitor at 4 V[J]. Advanced Functional Materials, 2018, 28(51): 1806153. |
23 | Yang Z F, Tian J R, Yin Z F, et al. Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: a review[J]. Carbon, 2019, 141: 467-480. |
24 | Kong C, Qian W, Zheng C, et al. Raising the performance of a 4 V supercapacitor based on an EMIBF4-single walled carbon nanotube nanofluid electrolyte[J]. Chemical Communications, 2013, 49(91): 10727-10729. |
25 | Kong C Y, Qian W Z, Zheng C, et al. Enhancing 5 V capacitor performance by adding single walled carbon nanotubes into an ionic liquid electrolyte[J]. Journal of Materials Chemistry A, 2015, 3(31): 15858-15862. |
26 | Yang Z F, Tian J R, Ye Z Z, et al. High energy and high power density supercapacitor with 3D Al foam-based thick graphene electrode: fabrication and simulation[J]. Energy Storage Materials, 2020, 33: 18-25. |
27 | Hurilechaoketu, Wang J, Cui C J, et al. Highly electroconductive mesoporous activated carbon fibers and their performance in the ionic liquid-based electrical double-layer capacitors[J]. Carbon, 2019, 154: 1-6. |
28 | 骞伟中, 崔超婕, 汪剑, 等. 一种高导电、高导热活性炭及制备系统、制备方法与用途: 110510609B[P]. 2021-04-13. |
Qian W, Cui C, Wang J, et al. High-conductivity and high-thermal-conductivity activated carbon and preparation system, preparation method and application thereof: 110510609B[P]. 2021-04-13. | |
29 | 中华人民共和国工业和信息化部. 中华人民共和国汽车行业标准: 车用超级电容器[S]. 北京: 中国计划出版社, 2015. |
Ministry of Industry and Information of the People's Republic of China. Automobile & Vehicle Standard of the People's Republic of China: Ultra-capacitor for electric vehicles. [S]. Beijing: China Planning Press, 2015. | |
30 | Yu Y T, Cui C J, Qian W Z, et al. Full capacitance potential of SWCNT electrode in ionic liquids at 4 V[J]. J. Mater. Chem. A, 2014, 2(46): 19897-19902. |
[1] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[2] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[3] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[4] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[5] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[6] | Lizhi WANG, Qiancheng HANG, Yeling ZHENG, Yan DING, Jiaji CHEN, Qing YE, Jinlong LI. Separation of methyl propionate + methanol azeotrope using ionic liquid entrainers [J]. CIESC Journal, 2023, 74(9): 3731-3741. |
[7] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[8] | Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds [J]. CIESC Journal, 2023, 74(9): 3665-3680. |
[9] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[10] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[11] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[12] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[13] | Zhen LONG, Jinhang WANG, Junjie REN, Yong HE, Xuebing ZHOU, Deqing LIANG. Experimental study on inhibition effect of natural gas hydrate formation by mixing ionic liquid with PVCap [J]. CIESC Journal, 2023, 74(6): 2639-2646. |
[14] | Jing LI, Conghao SHEN, Daliang GUO, Jing LI, Lizheng SHA, Xin TONG. Research progress in the application of lignin-based carbon fiber composite materials in energy storage components [J]. CIESC Journal, 2023, 74(6): 2322-2334. |
[15] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||