CIESC Journal ›› 2019, Vol. 70 ›› Issue (7): 2556-2563.DOI: 10.11949/0438-1157.20181046
• Separation engineering • Previous Articles Next Articles
Yonghou XIAO1,2(),Hongyan XIAO2,Benyuan LI2,Jianliang QIN2,Shuang QIU2,Gaohong HE1,2()
Received:
2018-09-19
Revised:
2019-05-24
Online:
2019-07-05
Published:
2019-07-05
Contact:
Gaohong HE
肖永厚1,2(),肖红岩2,李本源2,秦剑亮2,邱爽2,贺高红1,2()
通讯作者:
贺高红
作者简介:
肖永厚(1977—),男,博士,教授级高级工程师,<email>yonghou.xiao@dlut.edu.cn</email>
基金资助:
CLC Number:
Yonghou XIAO, Hongyan XIAO, Benyuan LI, Jianliang QIN, Shuang QIU, Gaohong HE. Optimization of helium/methane adsorption separation process based on Aspen Adsorption simulation[J]. CIESC Journal, 2019, 70(7): 2556-2563.
肖永厚, 肖红岩, 李本源, 秦剑亮, 邱爽, 贺高红. 基于Aspen Adsorption的氦气/甲烷吸附分离过程模拟优化[J]. 化工学报, 2019, 70(7): 2556-2563.
Add to citation manager EndNote|Ris|BibTeX
Parameter | He | CH4 |
---|---|---|
IP1/(kmol·kg-1·bar-1) | 2.483×10-5 | 0.00111 |
IP2/bar-1 | 0.00405 | 0.0251 |
Table 1 Adsorption isotherm parameters of He and CH4
Parameter | He | CH4 |
---|---|---|
IP1/(kmol·kg-1·bar-1) | 2.483×10-5 | 0.00111 |
IP2/bar-1 | 0.00405 | 0.0251 |
Parameter | Value |
---|---|
bed height, Hb / m | 1.00 |
bed diameter, Db / m | 0.25 |
bed void fraction, Ei/(m3 void·(m3 bed)-1) | 0.37 |
particle void fraction, Ep/(m3 void·(m3 bead) -1) | 0.21 |
particle density, ρ /(kg·m-3) | 670.0 |
particle radius, Rp / m | 0.001 |
particle shape factor | 1.0 |
mass transfer coefficient, MTC(CH4)/s-1 | 0.047 |
mass transfer coefficient, MTC(He)/s-1 | 0.05 |
Table 2 Adsorption simulation operation parameters
Parameter | Value |
---|---|
bed height, Hb / m | 1.00 |
bed diameter, Db / m | 0.25 |
bed void fraction, Ei/(m3 void·(m3 bed)-1) | 0.37 |
particle void fraction, Ep/(m3 void·(m3 bead) -1) | 0.21 |
particle density, ρ /(kg·m-3) | 670.0 |
particle radius, Rp / m | 0.001 |
particle shape factor | 1.0 |
mass transfer coefficient, MTC(CH4)/s-1 | 0.047 |
mass transfer coefficient, MTC(He)/s-1 | 0.05 |
塔1操作步骤 | 塔2操作步骤 | 时间/s |
---|---|---|
进料 | 逆放 | 30 |
吸附 | 冲洗 | 60 |
顺放(均压) | 升压(均压) | 180 |
逆放 | 进料 | 30 |
冲洗 | 吸附 | 60 |
升压(均压) | 顺放(均压) | 180 |
Table 3 Time series of pressure swing adsorption simulation in twin towers
塔1操作步骤 | 塔2操作步骤 | 时间/s |
---|---|---|
进料 | 逆放 | 30 |
吸附 | 冲洗 | 60 |
顺放(均压) | 升压(均压) | 180 |
逆放 | 进料 | 30 |
冲洗 | 吸附 | 60 |
升压(均压) | 顺放(均压) | 180 |
步骤 | 压力×10-5/Pa |
---|---|
进料 | 10 |
吸附 | 10 |
顺放 | 6.86 |
逆放 | 1.03 |
冲洗 | 1.22 |
升压 | 3.32 |
Table 4 Pressure at inlet of adsorption tower
步骤 | 压力×10-5/Pa |
---|---|
进料 | 10 |
吸附 | 10 |
顺放 | 6.86 |
逆放 | 1.03 |
冲洗 | 1.22 |
升压 | 3.32 |
时间/s | 塔1 | 塔2 | 塔3 |
---|---|---|---|
45 | 进料升压 | 逆放减压 | 高压吸附 |
45 | 高压吸附 | 均压升2-3 | 均压降2-3 |
45 | 高压吸附 | 进料升压 | 逆流减压 |
45 | 均压降1-3 | 高压吸附 | 均压升1-3 |
45 | 逆放减压 | 高压吸附 | 进料升压 |
45 | 均压升1-2 | 均压降1-2 | 高压吸附 |
Table 5 Triple tower six step PSA process sequence control
时间/s | 塔1 | 塔2 | 塔3 |
---|---|---|---|
45 | 进料升压 | 逆放减压 | 高压吸附 |
45 | 高压吸附 | 均压升2-3 | 均压降2-3 |
45 | 高压吸附 | 进料升压 | 逆流减压 |
45 | 均压降1-3 | 高压吸附 | 均压升1-3 |
45 | 逆放减压 | 高压吸附 | 进料升压 |
45 | 均压升1-2 | 均压降1-2 | 高压吸附 |
时间/s | 塔1 | 塔2 | 塔3 | 塔4 | 塔5 |
---|---|---|---|---|---|
30 | 高压吸附 | 均压升2-5 | 冲洗再生 | 逆放减压 | 均压降2-5 |
30 | 高压吸附 | 进料升压 | 均压升3-5 | 逆放减压 | 均压降3-5 |
30 | 均压降1-3 | 高压吸附 | 均压升1-3 | 冲洗再生 | 逆放减压 |
30 | 均压降1-4 | 高压吸附 | 进料升压 | 均压升1-4 | 逆放减压 |
30 | 逆放减压 | 均压降2-4 | 高压吸附 | 均压升2-4 | 冲洗再生 |
30 | 逆放减压 | 均压降2-5 | 高压吸附 | 进料升压 | 均压升2-5 |
30 | 冲洗再生 | 逆放减压 | 均压降3-5 | 高压吸附 | 均压升3-5 |
30 | 均压升1-3 | 逆放减压 | 均压降1-3 | 高压吸附 | 进料升压 |
30 | 均压升1-4 | 冲洗再生 | 逆放减压 | 均压降1-4 | 高压吸附 |
30 | 进料升压 | 均压升2-4 | 逆放减压 | 均压降2-4 | 高压吸附 |
Table 6 Sequence control of five tower ten step PSA process
时间/s | 塔1 | 塔2 | 塔3 | 塔4 | 塔5 |
---|---|---|---|---|---|
30 | 高压吸附 | 均压升2-5 | 冲洗再生 | 逆放减压 | 均压降2-5 |
30 | 高压吸附 | 进料升压 | 均压升3-5 | 逆放减压 | 均压降3-5 |
30 | 均压降1-3 | 高压吸附 | 均压升1-3 | 冲洗再生 | 逆放减压 |
30 | 均压降1-4 | 高压吸附 | 进料升压 | 均压升1-4 | 逆放减压 |
30 | 逆放减压 | 均压降2-4 | 高压吸附 | 均压升2-4 | 冲洗再生 |
30 | 逆放减压 | 均压降2-5 | 高压吸附 | 进料升压 | 均压升2-5 |
30 | 冲洗再生 | 逆放减压 | 均压降3-5 | 高压吸附 | 均压升3-5 |
30 | 均压升1-3 | 逆放减压 | 均压降1-3 | 高压吸附 | 进料升压 |
30 | 均压升1-4 | 冲洗再生 | 逆放减压 | 均压降1-4 | 高压吸附 |
30 | 进料升压 | 均压升2-4 | 逆放减压 | 均压降2-4 | 高压吸附 |
1 | DasN K, KumarP, MallikC, et al. Development of a helium purification system using pressure swing adsorption[J]. Current Science, 2012, 103: 631-634. |
2 | AndersonS T. Economics, helium, and the US federal helium reserve: summary and outlook[J]. Natural Resources Research, 2018, 27(4): 455-477. |
3 | RuffordT E, ChanK I, HuangS H, et al. A review of conventional and emerging process technologies for the recovery of helium from natural gas[J]. Adsorption Science & Technology, 2014, 32(1): 49-72. |
4 | ZartmanR E, ReynoldsJ H, WasserburgG J. Helium, argon and carbon in some natural gases[J]. Journal of Geophysical Research, 1961, 66(1): 277-306. |
5 | SircarS. Pressure swing adsorption[J]. Ind. Eng. Chem. Res., 2002, 41: 1389-1392. |
6 | ScholesC A, GoshU K, HoM T. The economics of helium separation and purification by gas separation membranes[J]. Industrial & Engineering Chemistry Research, 2017, 56: 5014-5020. |
7 | LiB, HeG, JiangX, et al. Pressure swing adsorption/membrane hybrid processes for hydrogen purification with a high recovery[J]. Frontiers of Chemical Science and Engineering, 2016, 10: 255-264. |
8 | WesslingM, LopezM L, StrathmannH. Accelerated plasticization of thin-film composite membranes used in gas separation[J]. Separation and Purification Technology, 2001, 24: 223-233. |
9 | DasN K, ChaudhuriH, BhandariR K, et al. Purification of helium from natural gas by pressure swing adsorption[J]. Current Science, 2008, 95: 1684-1687. |
10 | GolmakaniA, FatemiS, TamnanlooJ. CO2 capture from the tail gas of hydrogen purification unit by vacuum swing adsorption process, using SAPO-34[J]. Industrial & Engineering Chemistry Research, 2016, 55: 334-350. |
11 | 邢国海. 天然气提取氦气技术现状与发展[J]. 天然气工业, 2008, 28(8): 114-116. |
XingG H. Status quo and development of the technology on helium gas abstracted from natural gas[J]. Natural Gas Industry, 2008, 28(8): 114-116. | |
12 | AsgariM, AnisiH, MohammadiH, et al. Designing a commercial scale pressure swing adsorber for hydrogen purification[J]. Petroleum & Coal, 2014, 56 (5): 552-561. |
13 | AnisuzzamanS M, AwangB, KrishnaiahD, et al. A study on dynamic simulation of phenol adsorption in activated carbon packed bed column[J]. Journal of King Saud University - Engineering Sciences, 2016, 28: 47-55. |
14 | LiD D, ZhouY, ShenY H, et al. Experiment and simulation for separating CO2/N2 by dual-reflux pressure swing adsorption process[J]. Chemical Engineering Journal, 2016, 297: 315-324. |
15 | ThomasR J, DuttaR, GhoshP, et al. Applicability of equations of state for modeling helium systems[J]. Cryogenics, 2012, 52: 375-381. |
16 | XiaoJ S, PengY Z, BenardP, et al. Thermal effects on breakthrough curves of pressure swing adsorption for hydrogen purification[J]. International Journal of Hydrogen Energy, 2016, 41: 8236-8245. |
17 | 阎海宇, 付强, 张东辉, 等. 真空变压吸附捕集烟道气中二氧化碳的模拟、实验及分析[J]. 化工学报, 2016, 67(6): 2371-2379. |
YanH Y, FuQ, ZhangD H, et al. Simulation, experimentation and analyzation of vacuum pressure swing adsorption process for CO2 capture from dry flue gas[J]. CIESC Journal, 2016, 67(6): 2371-2379. | |
18 | 韩治洋, 丁兆阳, 张东辉, 等. 真空变压吸附分离氮气甲烷的模拟与控制[J]. 化工学报, 2018, 69(2): 750-758. |
HanZ Y, DingZ Y, ZhangD H, et al. Simulation and control of vacuum pressure swing adsorption for N2/CH4 separations[J]. CIESC Journal, 2018, 69(2): 750-758. | |
19 | ShafeeyanM S, DaudW, ShamiriA. A review of mathematical modeling of fixed-bed columns for carbon dioxide adsorption[J]. Chemical Engineering Research & Design, 2014, 92: 961-988. |
20 | MendesA M M, CostaC A V, RodriguesA E. Oxygen separation from air by PSA: modelling and experimental results(Ⅰ): Isothermal operation[J]. Separation and Purification Technology, 2001, 24: 173-188. |
21 | DantasT L P, LunaF M T, SilvaI J, et al. Carbon dioxide-nitrogen separation through pressure swing adsorption[J]. Chemical Engineering Journal, 2011, 172: 698-704. |
22 | ChahbaniM H, TondeurD. Mass transfer kinetics in pressure swing adsorption[J]. Separation and Purification Technology, 2000, 20: 185-196. |
23 | JeeJ G, KimM B, LeeC H. Pressure swing adsorption processes to purify oxygen using a carbon molecular sieve[J]. Chemical Engineering Science, 2005, 60: 869-882. |
24 | WonW, LeeS, LeeK S. Modeling and parameter estimation for a fixed-bed adsorption process for CO2 capture using zeolite 13X[J]. Separation and Purification Technology, 2012, 85: 120-129. |
25 | CavenatiS, GrandeC A, RodriguesA E. Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures[J]. Journal of Chemical and Engineering Data, 2004, 49: 1095-1101. |
26 | JahromiP E, FatemiS, VataniA, et al. Purification of helium from a cryogenic natural gas nitrogen rejection unit by pressure swing adsorption[J]. Separation and Purification Technology, 2018, 193: 91-102. |
27 | VemulaR R, KothareM V, SircarS. Lumped heat and mass transfer coefficient for simulation of a pressure swing adsorption process[J]. Separation Science and Technology, 2017, 52(1): 35-41. |
28 | DelgadoJ A, UguinaM A, SoteloJ L, et al. Fixed-bed adsorption of carbon dioxide/methane mixtures on silicalite pellets[J]. Adsorption-Journal of the International Adsorption Society, 2006, 12: 5-18. |
29 | DelgadoJ A, UguinaM A, SoteloJ L, et al. Fixed-bed adsorption of carbon dioxide-helium, nitrogen-helium and carbon dioxide-nitrogen mixtures onto silicalite pellets[J]. Separation and Purification Technology, 2006, 49: 91-100. |
30 | 刘冰, 孙伟娜, 张东辉, 等. 带循环的二阶变压吸附碳捕集工艺模拟、实验及分析[J]. 化工学报, 2018, 69(11): 4788-4797. |
LiuB, SunW N, ZhangD H, et al. Simulation, experimentation and analyzation of two stage pressure swing adsorption process for CO2 capture [J]. CIESC Journal, 2018, 69(11): 4788-4797. | |
31 | 孙伟娜, 阎海宇, 张东辉. 真空变压吸附分离氮气甲烷流程灵敏度分析与优化[J]. 化工学报, 2018, 69(2): 598-605. |
SunW N, YanH Y, ZhangD H. Sensitivity analysis and optimization of vacuum pressure swing adsorption process for N2/CH4 separation[J]. CIESC Journal, 2018, 69(2): 598-605. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[3] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[4] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[5] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[6] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[7] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[8] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[9] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[10] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[11] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[12] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[13] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[14] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[15] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||