CIESC Journal ›› 2020, Vol. 71 ›› Issue (2): 633-641.DOI: 10.11949/0438-1157.20190703
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Lianxia HOU(),Xin REN,Jinghong ZHOU(),Xinggui ZHOU
Received:
2019-06-21
Revised:
2019-08-18
Online:
2020-02-05
Published:
2020-02-05
Contact:
Jinghong ZHOU
通讯作者:
周静红
作者简介:
侯莲霞(1992—),女,硕士研究生,基金资助:
CLC Number:
Lianxia HOU, Xin REN, Jinghong ZHOU, Xinggui ZHOU. Inhibition effect of impurities on hydrogenation of corn stover hydrolysate[J]. CIESC Journal, 2020, 71(2): 633-641.
侯莲霞, 任鑫, 周静红, 周兴贵. 杂质对Ru/AC催化秸秆水解液加氢反应的抑制作用[J]. 化工学报, 2020, 71(2): 633-641.
Add to citation manager EndNote|Ris|BibTeX
反应物 | 杂质 | 转化率/% | |
---|---|---|---|
葡萄糖 | 木糖 | ||
秸秆水解液 | — | 0 | 0 |
混合糖液 | — | 100 | 100 |
混合糖液 | 表2中杂质1~16单独添加 | 100 | 100 |
混合糖液 | 木质素 | 73.2 | 75.2 |
混合糖液 | 纤维素酶 | 54.3 | 95.5 |
混合糖液 | 木质素+纤维素酶 | 28.1 | 68.8 |
混合糖液 | 表2中杂质1~16共同添加 | 18.4 | 58.0 |
混合糖液 | 表2中杂质1~18共同添加 | 0 | 0 |
Table 1 Effect of impurities on hydrogenation of sugar mixtures
反应物 | 杂质 | 转化率/% | |
---|---|---|---|
葡萄糖 | 木糖 | ||
秸秆水解液 | — | 0 | 0 |
混合糖液 | — | 100 | 100 |
混合糖液 | 表2中杂质1~16单独添加 | 100 | 100 |
混合糖液 | 木质素 | 73.2 | 75.2 |
混合糖液 | 纤维素酶 | 54.3 | 95.5 |
混合糖液 | 木质素+纤维素酶 | 28.1 | 68.8 |
混合糖液 | 表2中杂质1~16共同添加 | 18.4 | 58.0 |
混合糖液 | 表2中杂质1~18共同添加 | 0 | 0 |
序号 | 杂质种类 | 添加量/%(质量) | 序号 | 杂质种类 | 添加量/%(质量) |
---|---|---|---|---|---|
1 | 糠醛 | 0.3 | 10 | 苯甲酸 | 0.1 |
2 | 5-HMF | 0.3 | 11 | 4-甲基苯甲酸 | 0.1 |
3 | 乙酸 | 0.2 | 12 | 4-羟基苯甲酸 | 0.1 |
4 | 乙酰丙酸 | 0.2 | 13 | 4-羟甲基苯甲酸 | 0.1 |
5 | 乳酸 | 0.2 | 14 | 4-羧基苯甲醛 | 0.1 |
6 | CaSO4 | 0.2 | 15 | 对羟基苯甲醛 | 0.1 |
7 | 间苯二酚 | 0.1 | 16 | 对苯二甲酸 | 0.1 |
8 | 香草酸 | 0.1 | 17 | 木质素 | 0.79 |
9 | 香草醛 | 0.1 | 18 | 纤维素酶 | <0.2 |
Table 2 Type and amount of impurities
序号 | 杂质种类 | 添加量/%(质量) | 序号 | 杂质种类 | 添加量/%(质量) |
---|---|---|---|---|---|
1 | 糠醛 | 0.3 | 10 | 苯甲酸 | 0.1 |
2 | 5-HMF | 0.3 | 11 | 4-甲基苯甲酸 | 0.1 |
3 | 乙酸 | 0.2 | 12 | 4-羟基苯甲酸 | 0.1 |
4 | 乙酰丙酸 | 0.2 | 13 | 4-羟甲基苯甲酸 | 0.1 |
5 | 乳酸 | 0.2 | 14 | 4-羧基苯甲醛 | 0.1 |
6 | CaSO4 | 0.2 | 15 | 对羟基苯甲醛 | 0.1 |
7 | 间苯二酚 | 0.1 | 16 | 对苯二甲酸 | 0.1 |
8 | 香草酸 | 0.1 | 17 | 木质素 | 0.79 |
9 | 香草醛 | 0.1 | 18 | 纤维素酶 | <0.2 |
组别 | 反应物 | 催化剂 | 转化率/% | |
---|---|---|---|---|
葡萄糖 | 木糖 | |||
1 | 混合糖液 | 新鲜Ru/AC | 100 | 100 |
混合糖液 | Ru/AC1① | 100 | 100 | |
混合糖液 | Ru/AC4② | 100 | 100 | |
2 | 混合糖液+纤维素酶 | 新鲜Ru/AC | 54.3 | 95.5 |
混合糖液 | c-Ru/AC1③ | 53.6 | 94.2 | |
3 | 混合糖液+木质素 | 新鲜Ru/AC | 73.2 | 75.2 |
混合糖液 | l-Ru/AC1④ | 72.2 | 74.3 | |
4 | 混合糖液+纤维素酶+木质素 | 新鲜Ru/AC | 28.1 | 68.8 |
混合糖液 | cl-Ru/AC1⑤ | 27.4 | 69.4 | |
5 | 秸秆水解液 | 新鲜Ru/AC | 0 | 0 |
混合糖液 | h-Ru/AC1⑥ | 21.1 | 17.8 |
Table 3 Recycling ability of Ru/AC in hydrogenation under different conditions
组别 | 反应物 | 催化剂 | 转化率/% | |
---|---|---|---|---|
葡萄糖 | 木糖 | |||
1 | 混合糖液 | 新鲜Ru/AC | 100 | 100 |
混合糖液 | Ru/AC1① | 100 | 100 | |
混合糖液 | Ru/AC4② | 100 | 100 | |
2 | 混合糖液+纤维素酶 | 新鲜Ru/AC | 54.3 | 95.5 |
混合糖液 | c-Ru/AC1③ | 53.6 | 94.2 | |
3 | 混合糖液+木质素 | 新鲜Ru/AC | 73.2 | 75.2 |
混合糖液 | l-Ru/AC1④ | 72.2 | 74.3 | |
4 | 混合糖液+纤维素酶+木质素 | 新鲜Ru/AC | 28.1 | 68.8 |
混合糖液 | cl-Ru/AC1⑤ | 27.4 | 69.4 | |
5 | 秸秆水解液 | 新鲜Ru/AC | 0 | 0 |
混合糖液 | h-Ru/AC1⑥ | 21.1 | 17.8 |
催化剂 | 比表面积/(m2/g) | 孔容/(cm3/g) | Ru 分散度/% | CO 吸附量/(cm3/g) |
---|---|---|---|---|
新鲜Ru/AC | 1298 | 0.87 | 35.9 | 1.60 |
Ru/AC1 | 882 | 0.62 | 29.6 | 1.31 |
c-Ru/AC1 | 655 | 0.46 | 7.6 | 0.33 |
l-Ru/AC1 | 475 | 0.34 | 2.0 | 0.09 |
h-Ru/AC1 | 205 | 0.16 | 3.3 | 0.14 |
Table 4 Textural properties of fresh or used Ru/AC catalyst
催化剂 | 比表面积/(m2/g) | 孔容/(cm3/g) | Ru 分散度/% | CO 吸附量/(cm3/g) |
---|---|---|---|---|
新鲜Ru/AC | 1298 | 0.87 | 35.9 | 1.60 |
Ru/AC1 | 882 | 0.62 | 29.6 | 1.31 |
c-Ru/AC1 | 655 | 0.46 | 7.6 | 0.33 |
l-Ru/AC1 | 475 | 0.34 | 2.0 | 0.09 |
h-Ru/AC1 | 205 | 0.16 | 3.3 | 0.14 |
催化剂 | 出峰时间/min | CAS号 | 物质 |
---|---|---|---|
Ru/AC1 | 2.450 | 64-19-7 | 乙酸 |
c-Ru/AC1 | 3.749 | 110-86-1 | 吡啶 |
3.910 | 108-88-3 | 甲苯 | |
6.435 | 636-41-9 | 2-甲基吡咯 | |
7.632 | 104-29-4 | 苯乙腈 | |
l-Ru/AC1 | 6.311 | 108-95-2 | 苯酚 |
7.216 | 90-05-1 | 愈创木酚 | |
7.860 | 123-07-9 | 4-乙基苯酚 | |
8.052 | 93-51-6 | 4-甲基愈创木酚 | |
8.698 | 2785-89-9 | 4-乙基愈创木酚 | |
8.955 | 7786-61-0 | 对乙烯基愈创木酚 | |
9.196 | 91-10-1 | 紫丁香醇 | |
h-Ru/AC1 | 2.529 | 64-19-7 | 乙酸 |
2.308 | 534-22-5 | 2-甲基呋喃 | |
3.337 | 625-86-5 | 2,5-二甲基呋喃 | |
3.886 | 110-86-1 | 吡啶 | |
5.355 | 694-48-4 | 1,3-二甲基吡唑 | |
5.583 | 636-41-9 | 2-甲基吡咯 | |
5.747 | 616-43-3 | 3-甲基吡咯 | |
7.090 | 108-47-4 | 2,4-二甲基吡啶 | |
10.636 | 140-29-4 | 苯乙腈 | |
12.162 | 645-59-0 | 苯代丙腈 | |
10.756 | 123-56-8 | 丁二酰亚胺 | |
13.052 | 120-72-9 | 吲哚 | |
14.282 | 83-34-1 | 3-甲基吲哚 | |
4.239 | 108-88-3 | 甲苯 | |
9.809 | 106-44-5 | 对甲酚 | |
8.302 | 108-95-2 | 苯酚 | |
9.450 | 95-48-7 | 2-甲基苯酚 | |
9.853 | 90-05-1 | 2-甲氧基苯酚 | |
10.875 | 105-67-9 | 2,4-二甲基苯酚 | |
11.191 | 123-07-9 | 4-乙基苯酚 | |
11.456 | 93-51-6 | 4-甲基愈创木酚 | |
12.718 | 2785-89-9 | 4-乙基愈创木酚 | |
13.216 | 7786-61-0 | 对乙烯基愈疮木酚 | |
13.916 | 2785-87-7 | 二氢丁香酚 | |
15.008 | 97-54-1 | 异丁香酚 | |
17.979 | 6627-88-9 | 4-烯丙基-2,6-二甲氧基苯酚 | |
15.519 | 498-02-2 | 4-羟基-3-甲氧基苯乙酮 | |
18.383 | 2478-38-8 | 乙酰丁香酮 | |
14.415 | 121-33-5 | 香草醛 | |
13.702 | 91-10-1 | 紫丁香醇 | |
f-Ru/AC1① | 3.015 | 534-22-5 | 2-甲基呋喃 |
5-Ru/AC1② | 5.242 | 625-86-5 | 2,5-二甲基呋喃 |
Table 5 Results of py-GC/MS
催化剂 | 出峰时间/min | CAS号 | 物质 |
---|---|---|---|
Ru/AC1 | 2.450 | 64-19-7 | 乙酸 |
c-Ru/AC1 | 3.749 | 110-86-1 | 吡啶 |
3.910 | 108-88-3 | 甲苯 | |
6.435 | 636-41-9 | 2-甲基吡咯 | |
7.632 | 104-29-4 | 苯乙腈 | |
l-Ru/AC1 | 6.311 | 108-95-2 | 苯酚 |
7.216 | 90-05-1 | 愈创木酚 | |
7.860 | 123-07-9 | 4-乙基苯酚 | |
8.052 | 93-51-6 | 4-甲基愈创木酚 | |
8.698 | 2785-89-9 | 4-乙基愈创木酚 | |
8.955 | 7786-61-0 | 对乙烯基愈创木酚 | |
9.196 | 91-10-1 | 紫丁香醇 | |
h-Ru/AC1 | 2.529 | 64-19-7 | 乙酸 |
2.308 | 534-22-5 | 2-甲基呋喃 | |
3.337 | 625-86-5 | 2,5-二甲基呋喃 | |
3.886 | 110-86-1 | 吡啶 | |
5.355 | 694-48-4 | 1,3-二甲基吡唑 | |
5.583 | 636-41-9 | 2-甲基吡咯 | |
5.747 | 616-43-3 | 3-甲基吡咯 | |
7.090 | 108-47-4 | 2,4-二甲基吡啶 | |
10.636 | 140-29-4 | 苯乙腈 | |
12.162 | 645-59-0 | 苯代丙腈 | |
10.756 | 123-56-8 | 丁二酰亚胺 | |
13.052 | 120-72-9 | 吲哚 | |
14.282 | 83-34-1 | 3-甲基吲哚 | |
4.239 | 108-88-3 | 甲苯 | |
9.809 | 106-44-5 | 对甲酚 | |
8.302 | 108-95-2 | 苯酚 | |
9.450 | 95-48-7 | 2-甲基苯酚 | |
9.853 | 90-05-1 | 2-甲氧基苯酚 | |
10.875 | 105-67-9 | 2,4-二甲基苯酚 | |
11.191 | 123-07-9 | 4-乙基苯酚 | |
11.456 | 93-51-6 | 4-甲基愈创木酚 | |
12.718 | 2785-89-9 | 4-乙基愈创木酚 | |
13.216 | 7786-61-0 | 对乙烯基愈疮木酚 | |
13.916 | 2785-87-7 | 二氢丁香酚 | |
15.008 | 97-54-1 | 异丁香酚 | |
17.979 | 6627-88-9 | 4-烯丙基-2,6-二甲氧基苯酚 | |
15.519 | 498-02-2 | 4-羟基-3-甲氧基苯乙酮 | |
18.383 | 2478-38-8 | 乙酰丁香酮 | |
14.415 | 121-33-5 | 香草醛 | |
13.702 | 91-10-1 | 紫丁香醇 | |
f-Ru/AC1① | 3.015 | 534-22-5 | 2-甲基呋喃 |
5-Ru/AC1② | 5.242 | 625-86-5 | 2,5-二甲基呋喃 |
1 | Kruse A, Funke A, Titirici M M. Hydrothermal conversion of biomass to fuels and energetic materials[J]. Curr. Opin. Chem. Biol., 2013, 17(3): 515-521. |
2 | Ruppert A M, Weinberg K, Palkovits R. Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals[J]. Angew. Chem. Int. Ed., 2012, 51(11): 2564-2601. |
3 | Corma A, Iborra S, Velty A. Chemical routes for the transformation of biomass into chemicals[J]. Chem. Rev., 2007, 107(6): 2411-2502. |
4 | Wu Y, Yang R F, Lu J, et al. Hydrolysate-recycled liquid hot water pretreatment of reed straw and corn stover for bioethanol production with fed-batch, semi-simultaneous saccharification and fermentation[J]. BioResources, 2017, 12(2): 3695-3706. |
5 | Ruan Z H, Zanotti M, Archer S, et al. Oleaginous fungal lipid fermentation on combined acid- and alkali-pretreated corn stover hydrolysate for advanced biofuel production[J]. Bioresour. Technol., 2014, 163: 12-17. |
6 | Salvachua D, Smith H, St John P C, et al. Succinic acid production from lignocellulosic hydrolysate by Basfia succiniciproducens[J]. Bioresour. Technol., 2016, 214: 558-566. |
7 | Wang X Q, Salvachua D, Sanchez I N V, et al. Propionic acid production from corn stover hydrolysate by propionibacterium acidipropionici[J]. Biotechnol. Biofuels, 2017, 10(200): 1-13. |
8 | Ma K D, Hu G Q, Pan L W, et al. Highly efficient production of optically pure L-lactic acid from corn stover hydrolysate by thermophilic bacillus coagulans[J]. Bioresour. Technol., 2016, 219: 114-122. |
9 | Ma K D, He M X, You H Y, et al. Improvement of (R,R)-2,3-butanediol production from corn stover hydrolysate by cell recycling continuous fermentation[J]. Chemical Engineering Journal, 2018, 332: 361-369. |
10 | Zhou P P, Meng J, Bao J. Fermentative production of high titer citric acid from corn stover feedstock after dry dilute acid pretreatment and biodetoxification[J]. Bioresour. Technol., 2017, 224: 563-572. |
11 | Zhou X L, Zhou X, Liu G, et al. Integrated production of gluconic acid and xylonic acid using dilute acid pretreated corn stover by two-stage fermentation[J]. Biochemical Engineering Journal, 2018, 137: 18-22. |
12 | Ge L, Wu X M, Chen J W, et al. A new method for industrial production of 2,3-butanediol[J]. Journal of Biomaterials and Nanobiotechnology, 2011, 2(3): 335-336. |
13 | Fang Z H, Zhang J, Lu Q M, et al. Process development of short-chain polyols synthesis from corn stover by combination of enzymatic hydrolysis and catalytic hydrogenolysis[J]. Biotechnol. Rep., 2014, 3: 15-20. |
14 | Fehér A, Fehér C, Rozbach M, et al. Treatments of lignocellulosic hydrolysates and continuous-flow hydrogenation of xylose to xylitol[J]. Chemical Engineering & Technology, 2018, 41(3): 496-503. |
15 | Pang J F, Zheng M Y, Li X S, et al. Selective conversion of concentrated glucose to 1,2-propylene glycol and ethylene glycol by using RuSn/AC catalysts[J]. Applied Catalysis B: Environmental, 2018, 239: 300-308. |
16 | Li S L, Zan Y F, Sun Y Y, et al. Efficient one-pot hydrogenolysis of biomass-derived xylitol into ethylene glycol and 1,2-propylene glycol over Cu–Ni–ZrO2 catalyst without solid bases[J]. Journal of Energy Chemistry, 2019, 28: 101-106. |
17 | Yazdani P, Wang B, Rimaz S, et al. Glucose hydrogenolysis over Cu-La2O3/Al2O3: mechanistic insights[J]. Molecular Catalysis, 2019, 466: 138-145. |
18 | Cao Y L, Wang J W, Kang M Q, et al. Catalytic conversion of glucose and cellobiose to ethylene glycol over Ni–WO3/SBA-15 catalysts[J]. RSC Advances, 2015, 5(110): 90904-90912. |
19 | Zhao G H, Zheng M Y, Sun R Y, et al. Ethylene glycol production from glucose over W-Ru catalysts: maximizing yield by kinetic modeling and simulation[J]. AIChE Journal, 2017, 63(6): 2072-2080. |
20 | Srokol Z W, Rothenberg G. Practical issues in catalytic and hydrothermal biomass conversion: concentration effects on reaction pathways[J]. Topics in Catalysis, 2010, 53(15/16/17/18): 1258-1263. |
21 | Li N X, Zheng Y, Wei L F, et al. Metal nanoparticles supported on WO3 nanosheets for highly selective hydrogenolysis of cellulose to ethylene glycol[J]. Green Chemistry, 2017, 19(3): 682-691. |
22 | Xiao Z Q, Zhang Q, Chen T T, et al. Heterobimetallic catalysis for lignocellulose to ethylene glycol on nickel-tungsten catalysts: influenced by hydroxy groups[J]. Fuel, 2018, 230: 332-343. |
23 | Xiao Z H, Jin S H, Sha G Y, et al. Two-step conversion of biomass-derived glucose with high concentration over Cu–Cr catalysts[J]. Industrial & Engineering Chemistry Research, 2014, 53(21): 8735-8743. |
24 | 邵帅. 木质纤维素预处理过程的关键技术突破及其应用拓展[D]. 上海: 华东理工大学, 2018. |
Shao S. Study on the pretreatment technology of lignocellulose for overcoming the crucial technical barriers and its extended applications[D]. Shanghai: East China University of Science and Technology, 2018. | |
25 | Almeida J R M, Modig T, Anneli P, et al. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae[J]. Journal of Chemical Technology and Biotechnology, 2007, 82: 340-349. |
26 | He Y Q, Zhang J, Bao J. Acceleration of biodetoxification on dilute acid pretreated lignocellulose feedstock by aeration and the consequent ethanol fermentation evaluation[J]. Biotechnol. Biofuels, 2016, 9(19): 1-13. |
27 | Chen Z Y, Liu G, Zhang J, et al. A preliminary study on L-lysine fermentation from lignocellulose feedstock and techno-economic evaluation[J]. Bioresour. Technol., 2019, 271: 196-201. |
28 | 赵龙. 纳米碳纤维负载Ru催化氢解山梨醇制备低碳二元醇[D]. 上海: 华东理工大学, 2010. |
Zhao L. Sorbitol hydrogenolysis to lower-carbon glycols over carbon nanofibers supported Ru catalyst[D]. Shanghai: East China University of Science and Technology, 2010. | |
29 | Larsson S, Reimann A, Nilvebrant N O, et al. Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce[J]. Applied Biochemistry and Biotechnology, 1999, 71/72/73/74/75/76/77/78/79: 91-103. |
30 | Pienkos P T, Zhang M. Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates[J]. Cellulose, 2009, 16(4): 743-762. |
31 | Carvalho G B M, Mussatto S I, Cândido E J, et al. Comparison of different procedures for the detoxification of eucalyptus hemicellulosic hydrolysate for use in fermentative processes[J]. Journal of Chemical Technology & Biotechnology, 2006, 81(2): 152-157. |
32 | Schirmer-Michel A C, Flores S H, Hertz P F, et al. Production of ethanol from soybean hull hydrolysate by osmotolerant Candida guilliermondii NRRL Y-2075[J]. Bioresour. Technol., 2008, 99: 2898-2904. |
33 | Wang J, Gao Q Q, Zhang H Z, et al. Inhibitor degradation and lipid accumulation potentials of oleaginous yeast Trichosporon cutaneum using lignocellulose feedstock[J]. Bioresour. Technol., 2016, 218: 892-901. |
34 | Fenske J J, Griffi D A, Penner M H. Comparison of aromatic monomers in lignocellulosic biomass prehydrolysates[J]. Journal of Industrial Microbiology & Biotechnology, 1998, 20: 364-368. |
35 | Li Z Y, Liu Y, Wu S B. Efficient conversion of D-glucose into D-sorbitol over carbonized cassava dregs-supported ruthenium nanoparticles catalyst[J]. BioResources, 2018, 13(1): 1278-1288. |
36 | Tai Z J, Zhang J Y, Wang A Q, et al. Temperature-controlled phase-transfer catalysis for ethylene glycol production from cellulose[J]. Chem. Commun., 2012, 48(56): 7052-7054. |
37 | Gregg S J, Sing K S W. Adsorption Surface Area and Porosity[M]. London: Academic Press, 1982. |
38 | Zhao Y, Ding L, Liu J Y, et al. Pyrolysis characteristics of different humectant at high temperature[J]. Asian Journal of Chemistry, 2014, 26(15): 4893-4896. |
39 | ChiaVari G, Galletti G C. Pyrolysisgas chromatography/mass spectrometry of amino acids[J]. Journal of Analytical and Applied Pyrolysis, 1992, 24(2): 123-137. |
40 | Tsuge S, Matsubara H. High-resolution pyrolysis-gas chromatography of proteins and related materials[J]. Journal of Analytical and Applied Pyrolysis, 1985, 8: 49-64. |
41 | 肖博, 魏书亚, 宋燕. 应用热辅助甲基化——热裂解气相色谱技术(THM-Py-GC/MS)对壁画中蛋白质类胶结材料的分析鉴定[J]. 中国文物科学研究, 2018, (1): 70-76. |
Xiao B, Wei S Y, Song Y. Analysis and identification of protein cementing materials in murals by thermally assisted methylation-pyrolysis gas chromatography (THM-Py-GC/MS)[J]. China Cultural Heritage Scientific Research, 2018, 1: 70-76. | |
42 | 郭忠, 蒋新元, 廖媛媛, 等. 马尾松木质素快速热解及产物分析[J]. 中南林业科技大学学报, 2017, 37(6): 101-107. |
Guo Z, Jiang X Y, Liao Y Y, et al. Rapid pyrolysis and product analysis of masson pine lignin[J]. Journal of Central South University of Forestry & Technology, 2017, 37(6): 101-107. |
[1] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[2] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
[3] | Xiqing ZHANG, Yanting WANG, Yanhong XU, Shuling CHANG, Tingting SUN, Ding XUE, Lihong ZHANG. Effect of Mg content on isobutane dehydrogenation properties over nanosheets supported Pt-In catalysts [J]. CIESC Journal, 2023, 74(6): 2427-2435. |
[4] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[5] | Jianghuai ZHANG, Zhong ZHAO. Robust minimum covariance constrained control for C3 hydrogenation process and application [J]. CIESC Journal, 2023, 74(3): 1216-1227. |
[6] | Mengxin LIANG, Yan GUO, Shidong WANG, Hongwei ZHANG, Pei YUAN, Xiaojun BAO. Study on preparation of Pd catalyst supported on carbon nitride for the selective hydrogenation of SBS [J]. CIESC Journal, 2023, 74(2): 766-775. |
[7] | Jiachen SUN, Chunlei PEI, Sai CHEN, Zhijian ZHAO, Shengbao HE, Jinlong GONG. Advances in chemical-looping oxidative dehydrogenation of light alkanes [J]. CIESC Journal, 2023, 74(1): 205-223. |
[8] | Chenyang SHEN, Kaihang SUN, Yueping ZHANG, Changjun LIU. Research progresses on In2O3 and In2O3 supported metal catalysts for CO2 hydrogenation to methanol [J]. CIESC Journal, 2023, 74(1): 145-156. |
[9] | Kuan HUANG, Yongde MA, Zhenping CAI, Yanning CAO, Lilong JIANG. Research progress in catalytic hydroconversion of lipid to second-generation biodiesel [J]. CIESC Journal, 2023, 74(1): 380-396. |
[10] | Dan GUO, Yujie FANG, Yihan XU, Zhiyuan LI, Shouying HUANG, Shengping WANG, Xinbin MA. Research progress of the catalytic conversion of ethane and carbon dioxide [J]. CIESC Journal, 2022, 73(8): 3406-3416. |
[11] | Jun ZHANG, Sheng HU, Jing GU, Haoran YUAN, Yong CHEN. Catalytic hydrogenation of furfural over magnetic polymetallic materials derived from electroplating sludge in methanol [J]. CIESC Journal, 2022, 73(7): 2996-3006. |
[12] | Chan WANG, Guoxi XIAO, Xiaoxue GUO, Renwei XU, Yuanyuan YUE, Xiaojun BAO. Green synthesis and application of Beta zeolite prepared via mesoscale depolymerization-reorganization strategy [J]. CIESC Journal, 2022, 73(6): 2690-2697. |
[13] | Liyuan LI, Jianqiang WANG, Yi CHEN, Youdi GUO, Jian ZHOU, Zhicheng LIU, Yangdong WANG, Zaiku XIE. Study on the mesoscale mechanism of coking and deactivation of ZSM-5 catalyst in methanol to propylene reaction [J]. CIESC Journal, 2022, 73(6): 2669-2676. |
[14] | Feng YE, Gang LI, Xin FU, Xuemei LANG, Yanhong WANG, Shenglong WANG, Jianli ZHANG, Shuanshi FAN. A simulation study on propane dehydrogenation in porous membrane reactors for propylene production [J]. CIESC Journal, 2022, 73(5): 2008-2019. |
[15] | Ke JIN, Chenguang WANG, Longlong MA, Qi ZHANG. Preparation of core-shell nanomaterials and their application in thermocatalytic hydrogenation of CO/CO2 [J]. CIESC Journal, 2022, 73(3): 990-1007. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||