CIESC Journal ›› 2020, Vol. 71 ›› Issue (1): 409-416.DOI: 10.11949/0438-1157.20191271
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Minshan MENG(),Jiahua ZHAO,Pengfei ZHANG()
Received:
2019-09-24
Revised:
2019-10-24
Online:
2020-01-05
Published:
2020-01-05
Contact:
Pengfei ZHANG
通讯作者:
张鹏飞
作者简介:
孟敏珊(1996—),女,硕士研究生,基金资助:
CLC Number:
Minshan MENG, Jiahua ZHAO, Pengfei ZHANG. Synthesis of carbides supported on ordered mesoporous carbon by molten salt method[J]. CIESC Journal, 2020, 71(1): 409-416.
孟敏珊, 赵佳华, 张鹏飞. 熔盐法合成有序介孔碳负载的金属碳化物[J]. 化工学报, 2020, 71(1): 409-416.
Add to citation manager EndNote|Ris|BibTeX
材料名称 | 比表面积/(m2/g) | 孔容/(cm3/g) | 孔径/nm |
---|---|---|---|
TiC@C | 211 | 0.14 | 7.8 |
Mo2C@C | 438 | 0.58 | 7.6 |
Fe3C@C | 157 | 0.13 | 7.1 |
OM carbon | 1810 | 1.16 | 6.8 |
Table 1 Channel structure parameters for as-prepared samples
材料名称 | 比表面积/(m2/g) | 孔容/(cm3/g) | 孔径/nm |
---|---|---|---|
TiC@C | 211 | 0.14 | 7.8 |
Mo2C@C | 438 | 0.58 | 7.6 |
Fe3C@C | 157 | 0.13 | 7.1 |
OM carbon | 1810 | 1.16 | 6.8 |
1 | 凌晓凤, 顾娟, 李健生, 等. 一步法合成载铁有序介孔碳材料的形成机理[J]. 化工进展, 2012, 31(1): 156-162. |
Ling X F, Gu J, Li J S, et al. Mechanism of the synthesis of ordered Fe-containing mesoporous carbon composite materials in one-pot[J]. Chemical Industry and Engineering Progress, 2012, 31(1): 156-162. | |
2 | 赵亚丽, 何臻, 俞强, 等. 简易模板法制备有序介孔碳及其表征[J]. 化工进展, 2014, 33(9): 2392-2397. |
Zhao Y L, He Z, Yu Q, et al. Preparation and characterization of ordered mesoporous carbon by simple template method[J]. Chemical Industry and Engineering Progress, 2014, 33(9): 2392-2397. | |
3 | Li Z, Jaroniec M. Colloidal imprinting: a novel approach to the synthesis of mesoporous carbons[J]. Journal of the American Chemical Society, 2001, 123(37): 9208-9209. |
4 | Ariyadejwanich P, Tanthapanichakoon W, Nakagawa K, et al. Preparation and characterization of mesoporous activated carbon from waste tires[J]. Carbon, 2003, 41(1): 157-164. |
5 | Ohkubo T, Miyawaki J, Kaneko K, et al. Adsorption properties of templated mesoporous carbon (CMK-1) for nitrogen and supercritical methane: experiment and GCMC simulation[J]. The Journal of Physical Chemistry B, 2002, 106(25): 6523-6528. |
6 | Qin H, Jian R, Bai J, et al. Influence of molecular weight on structure and catalytic characteristics of ordered mesoporous carbon derived from lignin[J]. ACS Omega, 2018, 3(1): 1350-1356. |
7 | Li K, Jie S, Yuan L, et al. The synthesis of N, S-codoped ordered mesoporous carbon as an efficient metal-free catalyst for selective oxidation of arylalkanes[J]. Catalysis Communications, 2018, 112: 39-42. |
8 | Oyama S T. The Chemistry of Transition Metal Carbides and Nitrides[M]. Dordrecht: Springer, 1996. |
9 | 石宝宝, 贾志军, 王毅, 等. 新型二维过渡金属碳化物研究进展[J]. 化工新型材料, 2017, 45(12): 16-20. |
Shi B B, Jia Z J, Wang Y, et al. Research progress of new two-dimensional transition metal carbides[J]. New Chemical Materials, 2017, 45(12): 16-20. | |
10 | 甘赠国, 黄志宇, 庞纪峰, 等. 过渡金属碳化物的催化研究进展[J]. 精细石油化工进展, 2007, 8(6): 37-41. |
Gan Z G, Huang Z Y, Pang J F, et al. Research development on catalysis of transition metal carbides[J]. Advances in Fine Petrochemicals, 2007, 8(6): 37-41. | |
11 | 章永凡, 李俊篯, 丁开宁, 等. 过渡金属碳化物(111)面电子结构的理论研究[J]. 物理化学学报, 2003, 19(1): 40-45. |
Zhang Y F, Li J Q, Ding K N, et al. Theoretical studies on the geometries and electronic structures of the (111) surfaces of transition-metai carbides[J]. Acta Phys.-Chim. Sin., 2003, 19(1): 40-45. | |
12 | Zhang T, Guo X, Zhao Z. Glucose-assisted preparation of a nickel-molybdenum carbide bimetallic catalyst for chemoselective hydrogenation of nitroaromatics and hydrodeoxygenation of m‑cresol[J]. ACS Applied Nano Materials, 2018, 1(7): 3579-3589. |
13 | Lin Z, Wan W, Yao S, et al. Cobalt-modified molybdenum carbide as a selective catalyst for hydrodeoxygenation of furfural[J]. Applied Catalysis B Environmental, 2018, 233: 160-166. |
14 | 靳广洲, 朱建华, 俱虎良, 等. 碳化钼催化剂的制备及噻吩加氢脱硫性能[J]. 化工学报, 2006, 57(4): 799-804. |
Jin G Z, Zhu J H, Ju H L, et al. Preparation of molybdenum carbide catalyst and its hydrodesulfurization performance for thiophene[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(4): 799-804. | |
15 | Ordan yan S S, Nesmelov D D, Ovsienko A I. Phase formation during reactive sintering of the B4C–SiC–Si (Al) composite (review)[J]. Refractories and Industrial Ceramics, 2018, 58(6): 1-7. |
16 | Gaziev G A, Krylov O V, Roginskii S Z, et al. Dehydrogenation of cyclohexane on certain carbides borides and silicides[J]. Dokl. Akad. Nauk SSSR, 1961, 140(4): 863-867. |
17 | Levy R L, Boudart M. Platinum-like behavior of tungsten carbide in surface catalysis[J]. Science, 1973, 181(4099): 547-549. |
18 | 章永凡, 林伟, 王文峰, 等. 3d过渡金属碳化物相稳定性和化学键的第一性原理研究[J]. 化学学报, 2004, 62(11): 1041-1048. |
Zhang Y F, Lin W, Wang W F, et al. A first principle study on the phase stability and chemical bonding of the 3d transition metal carbides[J]. Acta Chimica Sinica, 2004, 62(11): 1041-1048. | |
19 | Aegerter P A, Quigley W W C, Simpson G J, et al. Thiophene hydrodesulfurization over alumina-supported molybdenum carbide and nitride catalysts: adsorption sites, catalytic activities, and nature of the active surface[J]. Journal of Catalysis, 1996, 164(1): 109-121. |
20 | Li S, Lee J S, Hyeon T, et al. Catalytic hydrodenitrogenation of indole over molybdenum nitride and carbides with different structures[J]. Applied Catalysis A General, 1999, 184(1): 1-9. |
21 | Nagai M, Kurakami T, Omi S. Activity of carbided molybdena–alumina for CO2 hydrogenation[J]. Catalysis Today, 1998, 45(1): 235-239. |
22 | Xiao T C, Hanif A, York A P E, et al. Study on the mechanism of partial oxidation of methane to synthesis gas over molybdenum carbide catalyst[J]. Physical Chemistry Chemical Physics, 2002, 4(18): 4549-4554. |
23 | Sehested J, Jacobsen C J H, Rokni S, et al. Activity and stability of molybdenum carbide as a catalyst for CO2 reforming[J]. Journal of Catalysis, 2001, 201(2): 206-212. |
24 | Ranhotra G S, Bell A T, Reimer J A. Catalysis over molybdenum carbides and nitrides(Ⅱ): Studies of CO hydrogenation and C2H6 hydrogenolysis[J]. Journal of Catalysis, 1987, 108(1): 40-49. |
25 | Hemming F, Wehrer P, Katrib A, et al. Reactivity of hexanes (2MP, MCP and CH) on W, W2C and WC powders(Ⅱ): Approach to the reaction mechanisms using concepts of organometallic chemistry[J]. Journal of Molecular Catalysis A Chemical, 1997, 124(1): 39–56. |
26 | Yuan S D, Hamid S B D, Li Y X, et al. Preparation of Mo2C/HZSM-5 and its catalytic performance for the conversion of n-butane into aromatics[J]. Journal of Molecular Catalysis A Chemical, 2002, 184(1): 257-266. |
27 | Zhang H, Cheng Y T, Vispute T P, et al. Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: the hydrogen to carbon effective ratio[J]. Energy & Environmental Science, 2011, 4(6): 2297-2307. |
28 | Ye J, Zhang S, Lee W E. Molten salt synthesis and characterization of SiC coated carbon black particles for refractory castable applications[J]. Journal of the European Ceramic Society, 2013, 33(10): 2023-2029. |
29 | Liu X, Antonietti M, Giordano C. Manipulation of phase and microstructure at nanoscale for SiC in molten salt synthesis[J]. Chemistry of Materials, 2013, 25(10): 2021-2027. |
30 | Li X, Dong Z, Westwood A, et al. Low-temperature preparation of single crystal titanium carbide nanofibers in molten salts[J]. Crystal Growth & Design, 2011, 11(7): 3122-3129. |
31 | Chen D, Zhao J H, Zhang P F, et al. Mechanochemical synthesis of metal–organic frameworks[J]. Polyhedron, 2019, 162: 59-64. |
32 | Zhao J H, Shu Y, Zhang P F. Solid-state CTAB-assisted synthesis of mesoporous Fe3O4 and Au@Fe3O4 by mechanochemistry[J]. Chinese Journal of Catalysis, 2019, 40(7): 1078-1084 |
33 | Wang X Q, Lee J S, Tsouris C, et al. Preparation of activated mesoporous carbons for electrosorption of ions from aqueous solutions[J]. Journal of Materials Chemistry, 2010, 20(22): 4602-4608. |
34 | Liu Z, Ling X Y, Su X, et al. Carbon-supported Pt and PtRu nanoparticles as catalysts for a direct methanol fuel cell[J]. The Journal of Physical Chemistry B, 2004, 108(24): 8234-8240. |
35 | Tian Z Q, Jiang S P, Liang Y M, et al. Synthesis and characterization of platinum catalysts on multiwalled carbon nanotubes by intermittent microwave irradiation for fuel cell applications[J]. The Journal of Physical Chemistry B, 2006, 110(11): 5343-5350. |
[1] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[2] | Yingxi DANG, Peng TAN, Xiaoqin LIU, Linbing SUN. Temperature swing for CO2 capture driven by radiative cooling and solar heating [J]. CIESC Journal, 2023, 74(1): 469-478. |
[3] | Jianxin CHEN, Ruijie ZHU, Nan SHENG, Chunyu ZHU, Zhonghao RAO. Preparation of cellulose-derived biomass porous carbon and its supercapacitor performance [J]. CIESC Journal, 2022, 73(9): 4194-4206. |
[4] | Xue’an LIU, Liyi TANG, Jian QIN, Dajiang TANG, Zhangfa TONG, Huiying QU. Preparation of carbon nanotube bridged porous carbon by Ni/Co-ZIF-8 pyrolysis and its application to supercapacitors [J]. CIESC Journal, 2022, 73(7): 3287-3297. |
[5] | Zihe CHEN, Chengzhi ZHAO, Wenli MAO, Nan SHENG, Chunyu ZHU. Preparation and thermal properties of phase change composites supported by oriented biomass porous carbon [J]. CIESC Journal, 2022, 73(4): 1817-1825. |
[6] | Boyang REN, Xiaogang CHE, Siyu LIU, Man WANG, Xinghua HAN, Ting DONG, Juan YANG. Preparation of coal-based porous carbon nanosheets by molten salt strategy as anodes for sodium-ion batteries [J]. CIESC Journal, 2022, 73(10): 4745-4753. |
[7] | Yijing WEN, Bo ZHANG, Xiaofei CHEN, Siyang ZHAO, Xin ZHOU, Yan HUANG, Zhong LI. Selectivity reversion mechanism of porous carbon for ethane-ethylene separation [J]. CIESC Journal, 2021, 72(9): 4768-4774. |
[8] | Qiongbin DAI, Hongbin LIU, Qibin XIA, Xin ZHOU, Zhong LI. Preparation of new granular carbon material and its efficient separation of methane and nitrogen [J]. CIESC Journal, 2021, 72(8): 4196-4203. |
[9] | Lingyu DONG, Rui GE, Yafei YUAN, Songyuan TANG, Guangping HAO, Anhui LU. Recent advances in porous carbon-based carbon dioxide electrocatalytic materials [J]. CIESC Journal, 2020, 71(6): 2492-2509. |
[10] | Zhengzheng XIA, Jialiang LIU, Jianjie NIU, Han HU, Qingshan ZHAO, Mingbo WU. Highly dispersed SiO2/petroleum pitch-derived porous carbon composite as anode material for lithium-ion batteries [J]. CIESC Journal, 2020, 71(6): 2752-2759. |
[11] | Lei ZOU, Guoqiang LIU, Miaomiao JIANG, Zeheng YANG, Weixin ZHANG. Preparation and modification of ZIF-67 derived Co/NC porous carbon composite for electrocatalytic oxygen evolution reaction [J]. CIESC Journal, 2020, 71(6): 2821-2829. |
[12] | ZHANG Haihua,DONG Haiquan,LI Hui,YUAN Luyun,FANG Zhe,CHENG Jun. Metal-organic framework carbide enhances interspecies electron transfer to produce methane [J]. CIESC Journal, 2020, 71(12): 5745-5754. |
[13] | OUYANG Jinbo,CHEN Jian,LIU Zhirong,ZHOU Limin,HAN Fangze,YING Xin. Research progress on preparation of biomass-derived porous carbon and its adsorption of pharmaceuticals in wastewater [J]. CIESC Journal, 2020, 71(12): 5420-5429. |
[14] | Xinfu HE, Xueying LONG, Hongju WU, Kaibo ZHANG, Jun ZHOU, Keke LI, Yating ZHANG, Jieshan QIU. Synthesis of N-doped graphene/porous carbon composite and its electrocatalytic performance on oxygen reduction reaction [J]. CIESC Journal, 2019, 70(6): 2308-2315. |
[15] | LIU Yu, HE Xin, ZHOU Wenying, LIAO Dankui, CUI Xuemin, SU Yao'en, TONG Zhangfa. Preparation and electrochemical properties of whisker-shaped hollow porous nitrogen-doped composite carbon electrode materials [J]. CIESC Journal, 2018, 69(S1): 115-122. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||