CIESC Journal ›› 2020, Vol. 71 ›› Issue (5): 2333-2343.DOI: 10.11949/0438-1157.20191178
• Energy and environmental engineering • Previous Articles Next Articles
Yanxia WANG(),Xiude HU,Jian HAO,Qingjie GUO()
Received:
2019-10-11
Revised:
2020-01-24
Online:
2020-05-05
Published:
2020-05-05
Contact:
Qingjie GUO
通讯作者:
郭庆杰
作者简介:
王燕霞(1987—),女,博士研究生,基金资助:
CLC Number:
Yanxia WANG, Xiude HU, Jian HAO, Qingjie GUO. The CO2 adsorption performance under flue gas for TEPA-impregnated composited oxidized activated carbon[J]. CIESC Journal, 2020, 71(5): 2333-2343.
王燕霞, 胡修德, 郝健, 郭庆杰. TEPA负载复合氧化活性炭吸附烟气中的CO2性能[J]. 化工学报, 2020, 71(5): 2333-2343.
Add to citation manager EndNote|Ris|BibTeX
样品名称 | 比表面积/ (m2/g) | 孔体积/ (cm3/g) | 微孔体积/ (cm3/g) | 氧含量/ %(质量) |
---|---|---|---|---|
AC | 1256.69 | 0.70 | 0.38 | 6.39 |
OAC-4 | 1360.80 | 0.81 | 0.28 | 10.54 |
COAC-4 | 1228.59 | 0.76 | 0.24 | 16.91 |
COAC-4-20TEPA | 543.39 | 0.35 | 0.12 | — |
COAC-4-30TEPA | 69.44 | 0.09 | 0 | — |
COAC-4-40TEPA | 23.15 | 0.04 | 0 | — |
COAC-4-50TEPA | 16.21 | 0.02 | 0 | — |
Table 1 Textural properties and oxygen content of adsorbents
样品名称 | 比表面积/ (m2/g) | 孔体积/ (cm3/g) | 微孔体积/ (cm3/g) | 氧含量/ %(质量) |
---|---|---|---|---|
AC | 1256.69 | 0.70 | 0.38 | 6.39 |
OAC-4 | 1360.80 | 0.81 | 0.28 | 10.54 |
COAC-4 | 1228.59 | 0.76 | 0.24 | 16.91 |
COAC-4-20TEPA | 543.39 | 0.35 | 0.12 | — |
COAC-4-30TEPA | 69.44 | 0.09 | 0 | — |
COAC-4-40TEPA | 23.15 | 0.04 | 0 | — |
COAC-4-50TEPA | 16.21 | 0.02 | 0 | — |
样品名称 | 比表面积/(m2/g) | 孔体积/ (cm3/g) | 微孔体积/(cm3/g) | 介孔体积/(cm3/g) |
---|---|---|---|---|
AC | 1256.70 | 0.70 | 0.38 | 0.32 |
OAC-2 | 1421.82 | 0.83 | 0.39 | 0.44 |
OAC-4 | 1360.80 | 0.81 | 0.28 | 0.51 |
OAC-8 | 1071.78 | 0.69 | 0.21 | 0.48 |
Table 2 Textural properties of activated carbons
样品名称 | 比表面积/(m2/g) | 孔体积/ (cm3/g) | 微孔体积/(cm3/g) | 介孔体积/(cm3/g) |
---|---|---|---|---|
AC | 1256.70 | 0.70 | 0.38 | 0.32 |
OAC-2 | 1421.82 | 0.83 | 0.39 | 0.44 |
OAC-4 | 1360.80 | 0.81 | 0.28 | 0.51 |
OAC-8 | 1071.78 | 0.69 | 0.21 | 0.48 |
样品名称 | 穿透 时间/ min | 穿透 吸附量/ (mmol/g) | 饱和 吸附量/ (mmol/g) | 胺效率/ (mmol CO2/(g TEPA)) |
---|---|---|---|---|
COAC-4-20TEPA | 4 | 0.62 | 1.40 | 8.31 |
COAC-4-30TEPA | 6 | 0.93 | 1.83 | 7.12 |
COAC-4-40TEPA | 10 | 1.55 | 2.45 | 6.66 |
COAC-4-50TEPA | 6 | 0.93 | 2.20 | 4.49 |
Table 3 CO2 adsorption capacity and amine efficiency of samples
样品名称 | 穿透 时间/ min | 穿透 吸附量/ (mmol/g) | 饱和 吸附量/ (mmol/g) | 胺效率/ (mmol CO2/(g TEPA)) |
---|---|---|---|---|
COAC-4-20TEPA | 4 | 0.62 | 1.40 | 8.31 |
COAC-4-30TEPA | 6 | 0.93 | 1.83 | 7.12 |
COAC-4-40TEPA | 10 | 1.55 | 2.45 | 6.66 |
COAC-4-50TEPA | 6 | 0.93 | 2.20 | 4.49 |
样品名称 | k0/(ml/(min·g)) | kd/(1/min) | R2 |
---|---|---|---|
AC | 66.0498 | 2.0001 | 0.9996 |
AC-40TEPA | 43.6547 | 0.4577 | 0.9793 |
COAC-4-40TEPA | 71.8006 | 0.3943 | 0.9775 |
Table 4 Parameters of deactivation model for fitting controlled samples
样品名称 | k0/(ml/(min·g)) | kd/(1/min) | R2 |
---|---|---|---|
AC | 66.0498 | 2.0001 | 0.9996 |
AC-40TEPA | 43.6547 | 0.4577 | 0.9793 |
COAC-4-40TEPA | 71.8006 | 0.3943 | 0.9775 |
1 | Greer K, Zeller D, Woroniak J, et al. Global trends in carbon dioxide (CO2) emissions from fuel combustion in marine fisheries from 1950 to 2016[J]. Marine Policy, 2019, 107: 103382. |
2 | Cox P, Betts R, Jones C, et al. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model[J]. Nature, 2000, 408(6809): 184-187. |
3 | Goeppert A, Czaun M, Surya Prakash G K, et al. Air as the renewable carbon source of the future: an overview of CO2 capture from the atmosphere[J]. Energy & Environmental Science, 2012, 5(7): 7833. |
4 | Peng H L, Zhang J B, Zhang J Y, et al. Chitosan-derived mesoporous carbon with ultrahigh pore volume for amine impregnation and highly efficient CO2 capture[J]. Chemical Engineering Journal, 2019, 359: 1159-1165. |
5 | Mondal M K, Balsora H K, Varshney P. Progress and trends in CO2 capture/separation technologies: a review[J]. Energy, 2012, 46(1): 431-441. |
6 | Mardani A, Streimikiene D, Cavallaro F, et al. Carbon dioxide (CO2) emissions and economic growth: a systematic review of two decades of research from 1995 to 2017[J]. Science of The Total Environment, 2019, 649: 31-49. |
7 | 阎海宇, 付强, 周言, 等. 真空变压吸附捕集烟道气中二氧化碳的模拟、实验及分析[J]. 化工学报, 2016, 67(6): 2371-2379. |
Yan H Y, Fu Q, Zhou Y, et al. Simulation, experimentation and analyzation of vacuum pressure swing adsorption process for CO2 capture from dry flue gas[J]. CIESC Journal, 2016, 67(6): 2371-2379. | |
8 | 刘亚敏, 彭蕾, 苏凤英, 等. 多孔胺基化氧化石墨烯基材料对CO2的吸附性能研究[J]. 化工学报, 2019, 70(5): 2016-2024. |
Liu Y M, Peng L, Su F Y, et al. Study of CO2 adsorption on amine functionalized graphene oxide porous materials[J]. CIESC Journal, 2019, 70(5): 2016-2024. | |
9 | 何凯武, 唐思扬, 刘长军, 等. 有机胺功能化介孔固体吸附剂吸附分离CO2性能研究[J]. 化工学报, 2018, 69(9): 3887-3895. |
He K W, Tang S Y, Liu C J, et al. Performance of amine functionalized mesoprous adsorbents for CO2 adsorption[J]. CIESC Journal, 2018, 69(9): 3887-3895. | |
10 | 彭召静, 赵彦杰, 黄成德, 等. 用于燃烧后CO2捕集系统的胺基固态吸附材料研究进展[J]. 化工进展, 2018, 37(2): 610-620. |
Peng Z J, Zhao Y J, Huang C D, et al. Recent advances in amine-based solid sorbents for post-combustion CO2 capture[J]. Chemical Industry and Engineering Process, 2018, 37(2): 610-620. | |
11 | Kishor R, Ghoshal A K. APTES grafted ordered mesoporous silica KIT-6 for CO2 adsorption[J]. Chemical Engineering Journal, 2015, 262: 882-890. |
12 | Ren Y P, Ding R Y, Yue H R, et al. Amine-grafted mesoporous copper silicates as recyclable solid amine sorbents for post-combustion CO2 capture[J]. Applied Energy, 2017, 198: 250-260. |
13 | Harlick P J E, Sayari A. Applications of pore-expanded mesoporous silicas (3): Triamine silane grafting for enhanced CO2 adsorption[J]. Industrial & Engineering Chemistry Research, 2006, 45(9): 3248-3255. |
14 | Jung H, Jeon S, Jo D H, et al. Effect of crosslinking on the CO2 adsorption of polyethyleneimine-impregnated sorbents[J]. Chemical Engineering Journal, 2017, 307: 836-844. |
15 | Zhang G J, Zhao P Y, Hao L X, et al. Amine-modified SBA-15(P): a promising adsorbent for CO2 capture[J]. Journal of CO2 Utilization, 2018, 24: 22-33. |
16 | Kishor R, Ghoshal A K. Amine-modified mesoporous milica for CO2 adsorption: the role of structural parameters[J]. Industrial & Engineering Chemistry Research, 2017, 56(20): 6078-6087. |
17 | Rao N, Wang M, Shang Z M, et al. CO2 adsorption by amine-functionalized MCM-41: a comparison between impregnation and grafting modification methods[J]. Energy & Fuels, 2018, 32(1): 670-677. |
18 | Wang Y S, Du T, Qiu Z Y, et al. CO2 adsorption on polyethylenimine-modified ZSM-5 zeolite synthesized from rice husk ash[J]. Materials Chemistry and Physics, 2018, 207: 105-113. |
19 | Wang X, Chen L L, Guo Q J. Development of hybrid amine-functionalized MCM-41 sorbents for CO2 capture[J]. Chemical Engineering Journal, 2015, 260: 573-581. |
20 | Zhang Z Z, Wang H, Chen X Q, et al. CO2 sorption in wet ordered mesoporous silica kit-6: effects of water content and mechanism on enhanced sorption capacity[J]. Adsorption, 2014, 20(7): 883-888. |
21 | Jiao J, Cao J, Xia Y, et al. Improvement of adsorbent materials for CO2 capture by amine functionalized mesoporous silica with worm-hole framework structure[J]. Chemical Engineering Journal, 2016, 306: 9-16. |
22 | Wang X, Guo Q J. CO2 adsorption behavior of activated coal char modified with tetraethylenepentamine[J]. Energy & Fuels, 2016, 30(4): 3281-3288. |
23 | Gibson J A A, Gromov A V, Brandani S, et al. The effect of pore structure on the CO2 adsorption efficiency of polyamine impregnated porous carbons[J]. Microporous and Mesoporous Materials, 2015, 208: 129-139. |
24 | Siegelman R L, Mcdonald T M, Gonzalez M I, et al. Controlling cooperative CO2 adsorption in diamine-appended Mg2(dobpdc) metal-organic frameworks[J]. Journal of the American Chemical Society, 2017, 139(30): 10526-10538. |
25 | Darunte L A, Terada Y, Murdock C R, et al. Monolith-supported amine-functionalized Mg2(dobpdc) adsorbents for CO2 capture[J]. ACS Appl. Mater. Interfaces, 2017, 9(20): 17042-17050. |
26 | Gholidoust A, Atkinson J D, Hashisho Z. Enhancing CO2 adsorption via amine-impregnated activated carbon from oil sands coke[J]. Energy & Fuels, 2017, 31(2): 1756-1763. |
27 | Guo Y F, Zhao C W, Li C H, et al. Application of PEI-K2CO3/AC for capturing CO2 from flue gas after combustion[J]. Applied Energy, 2014, 129: 17-24. |
28 | Daud W M A W, Houshamnd A H. Textural characteristics, surface chemistry and oxidation of activated carbon[J]. Journal of Natural Gas Chemistry, 2010, 19(3): 267-279. |
29 | El-Hendawy A A. Influence of HNO3 oxidation on the structure and adsorptive properties of corncob-based activated carbon[J]. Carbon, 2003, 41(4): 713-722. |
30 | Macías-García A, Díaz-Díez M A, Cuerda-Correa E M, et al. Study of the pore size distribution and fractal dimension of HNO3-treated activated carbons[J]. Applied Surface Science, 2006, 252(17): 5972-5975. |
31 | Wang X, Guo Q, Zhao J, et al. Mixed amine-modified MCM-41 sorbents for CO2 capture[J]. International Journal of Greenhouse Gas Control, 2015, 37: 90-98. |
32 | Wang X, Guo Q, Kong T T. Tetraethylenepentamine-modified MCM-41/silica gel with hierarchical mesoporous structure for CO2 capture[J]. Chemical Engineering Journal, 2015, 273: 472-480. |
33 | Wang Y X, Hu X D, Hao J, et al. Nitrogen and oxygen codoped porous carbon with superior CO2 adsorption performance: a combined experimental and DFT calculation study[J]. Industrial & Engineering Chemistry Research, 2019, 58(29): 13390-13400. |
34 | Zhang G J, Zhao P Y, Hao L X, et al. A novel amine double functionalized adsorbent for carbon dioxide capture using original mesoporous silica molecular sieves as support[J]. Separation and Purification Technology, 2019, 209: 516-527. |
35 | Shao L S, Wang S Q, Liu M Q, et al. Triazine-based hyper-cross-linked polymers derived porous carbons for CO2 capture[J]. Chemical Engineering Journal, 2018, 339: 509-518. |
36 | Liu F Q, Wang L L, Li G H, et al. Hierarchically structured graphene coupled microporous organic polymers for superior CO2 capture[J]. ACS Applied Materials & Interfaces, 2017, 9(39): 33997-34004. |
37 | Lai Q H, Diao Z J, Kong L L, et al. Amine-impregnated silicic acid composite as an efficient adsorbent for CO2 capture[J]. Applied Energy, 2018, 223: 293-301. |
[1] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[2] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[3] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[4] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[5] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[6] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[7] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[8] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[9] | Longyi LYU, Wenbo JI, Muda HAN, Weiguang LI, Wenfang GAO, Xiaoyang LIU, Li SUN, Pengfei WANG, Zhijun REN, Guangming ZHANG. Enhanced anaerobic removal of halogenated organic pollutants by iron-based conductive materials: research progress and future perspectives [J]. CIESC Journal, 2023, 74(8): 3193-3202. |
[10] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
[11] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[12] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[13] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[14] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[15] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||