CIESC Journal ›› 2020, Vol. 71 ›› Issue (5): 2024-2034.DOI: 10.11949/0438-1157.20191101

• Fluid dynamics and transport phenomena • Previous Articles     Next Articles

Simulation and analysis of mass transfer and absorption process intensification by villi movement

Xiaolan HUA1(),Yanan ZHANG1,Zhizhong DONG2,3,Yong WANG2,Xiao Dong CHEN1,Jie XIAO1()   

  1. 1.School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
    2.Nutrition & Health Research Institute, COFCO Corporation, Beijing Engineering Laboratory of Geriatric Nutrition & Foods, Beijing Key Laboratory of Nutrition & Health and Food Safety, Beijing 102209, China
    3.Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China
  • Received:2019-10-07 Revised:2020-02-29 Online:2020-05-05 Published:2020-05-05
  • Contact: Jie XIAO

模拟分析绒毛运动对传质和吸收过程的强化

华晓蓝1(),张亚南1,董志忠2,3,王勇2,陈晓东1,肖杰1()   

  1. 1.苏州大学材料与化学化工学部化工与环境工程学院,江苏 苏州 215123
    2.中粮营养健康研究院, 老年食品营养北京市 工程实验室,营养健康与食品安全北京市重点实验室,北京 102209
    3.江苏省现代粮食流通与安全协同创新中心,江苏 南京 210023
  • 通讯作者: 肖杰
  • 作者简介:华晓蓝(1982—),女,硕士研究生,huaxiaolan@suda.edu.cn
  • 基金资助:
    国家自然科学基金项目(21978184);江苏省自然科学基金优秀青年基金项目(BK20170062);国家重点研发计划项目(2016YFE0101200);北京市科技计划课题(D171100008017002);江苏双创计划项目;江苏特聘教授计划项目;江苏优势学科PAPD

Abstract:

The inner wall of the digestive organ has a multi-level and multi-scale structure and complex movement patterns. Understanding its role in the process of digestion and absorption is of great significance to human health. From a chemical engineer s unique perspective, this work developed a multi-physics computational fluid dynamics (CFD) model to describe nutrient transfer and absorption in the small intestine driven by villi movement. The moving mesh method was successfully implemented to realize the cyclic back-and-forth movement of villi. Furthermore, data analysis methods were developed to quantify mass transfer and absorption performance. Numerical simulation results show that the back and forth movement of villi along the axial direction can generate two characteristic vortexes. The formation of vortexes can effectively reduce mass transfer resistance in the radial direction. The top part of villi plays critical role in nutrient absorption. A shorter movement cycle offers a higher villi velocity, which results in a higher value of the maximum enhancement factor and hence a higher absorption amount. The case with taller villi demonstrates higher mass-transfer enhancement factor. At the same time, taller villi offer larger absorption area. These two positive factors together contribute to a much higher absorption amount as compared with the case with shorter villi. In this specific study, the case with 900 μm high villi and a movement cycle of 6 s, the mass transfer performance can be improved by over 500% as compared to the case without villi movement (i.e., a mass-transfer enhancement factor reaching 6).

Key words: absorption, mass transfer, mathematical modeling, computational fluid dynamics, small intestine, villi

摘要:

消化器官内壁有着多级多尺度结构且运动方式复杂,理解其在消化吸收过程中的作用对人类健康具有重要意义。着眼于人体小肠绒毛,从化学工程师的独特视角出发,建立多物理场耦合模型描述小肠绒毛运动驱动下的营养物质传递与吸收。成功应用动网格方法实现绒毛往返周期运动。同时建立分析方法,量化传质与吸收效果。模拟结果显示绒毛沿着小肠管路轴向的往返运动,可以形成两个特征涡流,有效强化绒毛间流体和外部流体的交换,减小径向传质阻力。绒毛顶部在吸收中起到了关键作用。绒毛运动周期越小,最大传质增强因子越高,吸收量越大。绒毛越高,最大传质增强因子越高,再加上吸收面积越大,总吸收量会显著提升。对于900 μm高的绒毛,在运动周期为6 s情况下,传质效果比绒毛不运动时的传质效果提升超过500%。

关键词: 吸收, 传质, 数学模拟, 计算流体力学, 小肠, 绒毛

CLC Number: