CIESC Journal ›› 2020, Vol. 71 ›› Issue (8): 3741-3751.DOI: 10.11949/0438-1157.20200149
• Energy and environmental engineering • Previous Articles Next Articles
Shuangchen MA1(),Quan ZHOU1,Jianzong CAO2,Qi LIU1,Wentong CHEN2,Shuaijun FAN1,Yakun YAO2,Chenyu LIN1,Caini MA1
Received:
2020-02-17
Revised:
2020-03-13
Online:
2020-08-05
Published:
2020-08-05
Contact:
Shuangchen MA
马双忱1(),周权1,曹建宗2,刘琦1,陈文通2,樊帅军1,要亚坤2,林宸雨1,马彩妮1
通讯作者:
马双忱
作者简介:
马双忱(1968—),男,博士,教授,CLC Number:
Shuangchen MA, Quan ZHOU, Jianzong CAO, Qi LIU, Wentong CHEN, Shuaijun FAN, Yakun YAO, Chenyu LIN, Caini MA. Modeling and simulation of wet desulfurization system dynamic process[J]. CIESC Journal, 2020, 71(8): 3741-3751.
马双忱, 周权, 曹建宗, 刘琦, 陈文通, 樊帅军, 要亚坤, 林宸雨, 马彩妮. 湿法脱硫系统动态过程建模与仿真[J]. 化工学报, 2020, 71(8): 3741-3751.
Add to citation manager EndNote|Ris|BibTeX
项目 | 内容 | 单位 |
---|---|---|
吸收塔塔形 | 喷淋空塔 | |
流向 | 逆向 | |
浆液池高度 | 13.7 | m |
浆液池直径 | 13.2 | m |
吸收区高度 | 23.0 | m |
吸收区直径 | 13.2 | m |
Table 1 Basic parameters of desulfurization tower
项目 | 内容 | 单位 |
---|---|---|
吸收塔塔形 | 喷淋空塔 | |
流向 | 逆向 | |
浆液池高度 | 13.7 | m |
浆液池直径 | 13.2 | m |
吸收区高度 | 23.0 | m |
吸收区直径 | 13.2 | m |
变量名 | 化学反应速率 | 数值 | 单位 | 来源文献 |
---|---|---|---|---|
k2 | 反应(2)正 | 6.27×105 | mol/m3 | [ |
k3 | 反应(2)逆 | 2.00×104 | (mol/m3)-1 | [ |
k4 | 反应(3)正 | 3.11×105 | mol/m3 | [ |
k5 | 反应(3)逆 | 5.00×104 | (mol/m3) -1 | [ |
k8 | 反应(5)正 | 4.52×104 | mol/m3 | [ |
k9 | 反应(5)逆 | 2.11×104 | (mol/m3) -1 | [ |
k10 | 反应(6)正 | 8.21×104 | (mol/m3) -1 | [ |
k11 | 反应(6)逆 | 4.53×104 | mol/m3 | [ |
k12 | 反应(7)正 | 2.30×105 | (mol/m3) -1 | [ |
k13 | 反应(7)逆 | 7.21×104 | mol/m3 | [ |
k14 | 反应(8)单向 | 2.31×104 | [ | |
k15 | 反应(9)单向 | 1.30×10-3 | [ | |
k16 | 反应(10)单向 | 2.50×102 | [ | |
k17 | 反应(11)单向 | 2.50×102 | [ | |
k18 | 反应(12)正 | 1.52×104 | (mol/m3) -1 | [ |
k19 | 反应(12)逆 | 6.37×104 | mol/m3 | [ |
k22 | 反应(14)正 | 2.70×104 | (mol/m3) -1 | [ |
k23 | 反应(14)逆 | 5.38×105 | mol/m3 | [ |
SO2的亨利系数 | 5.52×10-3 | kPa | [ | |
CaCO3溶解常数 | 6.32×10-12 | mol/(kg·s) | [ | |
CaCO3溶度积 | 2.80×10-3 | (mol/m3)2 | [ |
Table 2 Chemical reaction parameters
变量名 | 化学反应速率 | 数值 | 单位 | 来源文献 |
---|---|---|---|---|
k2 | 反应(2)正 | 6.27×105 | mol/m3 | [ |
k3 | 反应(2)逆 | 2.00×104 | (mol/m3)-1 | [ |
k4 | 反应(3)正 | 3.11×105 | mol/m3 | [ |
k5 | 反应(3)逆 | 5.00×104 | (mol/m3) -1 | [ |
k8 | 反应(5)正 | 4.52×104 | mol/m3 | [ |
k9 | 反应(5)逆 | 2.11×104 | (mol/m3) -1 | [ |
k10 | 反应(6)正 | 8.21×104 | (mol/m3) -1 | [ |
k11 | 反应(6)逆 | 4.53×104 | mol/m3 | [ |
k12 | 反应(7)正 | 2.30×105 | (mol/m3) -1 | [ |
k13 | 反应(7)逆 | 7.21×104 | mol/m3 | [ |
k14 | 反应(8)单向 | 2.31×104 | [ | |
k15 | 反应(9)单向 | 1.30×10-3 | [ | |
k16 | 反应(10)单向 | 2.50×102 | [ | |
k17 | 反应(11)单向 | 2.50×102 | [ | |
k18 | 反应(12)正 | 1.52×104 | (mol/m3) -1 | [ |
k19 | 反应(12)逆 | 6.37×104 | mol/m3 | [ |
k22 | 反应(14)正 | 2.70×104 | (mol/m3) -1 | [ |
k23 | 反应(14)逆 | 5.38×105 | mol/m3 | [ |
SO2的亨利系数 | 5.52×10-3 | kPa | [ | |
CaCO3溶解常数 | 6.32×10-12 | mol/(kg·s) | [ | |
CaCO3溶度积 | 2.80×10-3 | (mol/m3)2 | [ |
变量名 | 含义 | 取值 | 单位 | 参数 类型 |
---|---|---|---|---|
Ggas,f | 原烟气体积流量 | 323.95 | m3/s | 不可调 |
原烟气中SO2浓度 | 0.0212 | mol/m3 | 不可调 | |
原烟气中CO2浓度 | 0.5451 | mol/m3 | 不可调 | |
原烟气中O2浓度 | 2.3161 | mol/m3 | 不可调 | |
氧化风体积流量 | 1.4722 | m3/s | 不可调 | |
氧化风中O2浓度 | 9.375 | mol/m3 | 不可调 | |
输入固相CaCO3体积流量 | 2.2820 | m3/s | 可调 | |
单位体积输入固相CaCO3物质的量 | 22319 | mol/m3 | 可调 | |
输出固相CaSO4体积流量 | 2.2820 | m3/s | 可调 | |
单位体积输出固相CaCO3物质的量 | 计算值 | mol/m3 | 不可调 | |
Lout | 排出脱硫废水的体积流量 | 0.01 | m3/s | 可调 |
pH | 浆液区的pH | 4.98 | 无量纲 | 不可调 |
Table 3 External parameters
变量名 | 含义 | 取值 | 单位 | 参数 类型 |
---|---|---|---|---|
Ggas,f | 原烟气体积流量 | 323.95 | m3/s | 不可调 |
原烟气中SO2浓度 | 0.0212 | mol/m3 | 不可调 | |
原烟气中CO2浓度 | 0.5451 | mol/m3 | 不可调 | |
原烟气中O2浓度 | 2.3161 | mol/m3 | 不可调 | |
氧化风体积流量 | 1.4722 | m3/s | 不可调 | |
氧化风中O2浓度 | 9.375 | mol/m3 | 不可调 | |
输入固相CaCO3体积流量 | 2.2820 | m3/s | 可调 | |
单位体积输入固相CaCO3物质的量 | 22319 | mol/m3 | 可调 | |
输出固相CaSO4体积流量 | 2.2820 | m3/s | 可调 | |
单位体积输出固相CaCO3物质的量 | 计算值 | mol/m3 | 不可调 | |
Lout | 排出脱硫废水的体积流量 | 0.01 | m3/s | 可调 |
pH | 浆液区的pH | 4.98 | 无量纲 | 不可调 |
变量名 | 含义 | 取值 | 单位 |
---|---|---|---|
G | 气相体积流量 | 363.3869 | m3/s |
L | 液相体积流量 | 5.2649 | m3/s |
S | 固相体积流量 | 0.7320 | m3/s |
Vg,i | 第i层气相体积(i=1~5) | 619.2799 | m3 |
Vl,i | 第i层液相体积(i=1~5) | 8.9724 | m3 |
Vs,i | 第i层固相体积(i=1~5) | 1.2475 | m3 |
Vg,6 | 氧化区气相体积 | 7.6265 | m3 |
Vl,i | 氧化区液相体积 | 1852.7 | m3 |
Vs,i | 氧化区固相体积 | 14.51 | m3 |
Table 4 Internal parameters
变量名 | 含义 | 取值 | 单位 |
---|---|---|---|
G | 气相体积流量 | 363.3869 | m3/s |
L | 液相体积流量 | 5.2649 | m3/s |
S | 固相体积流量 | 0.7320 | m3/s |
Vg,i | 第i层气相体积(i=1~5) | 619.2799 | m3 |
Vl,i | 第i层液相体积(i=1~5) | 8.9724 | m3 |
Vs,i | 第i层固相体积(i=1~5) | 1.2475 | m3 |
Vg,6 | 氧化区气相体积 | 7.6265 | m3 |
Vl,i | 氧化区液相体积 | 1852.7 | m3 |
Vs,i | 氧化区固相体积 | 14.51 | m3 |
30 | 余胜威. MATLAB优化算法案例分析与应用: 进阶篇[M]. 北京: 清华大学出版社, 2015: 225-228. |
Yu S W. Case Study and Application of MATLAB Optimization Algorithm: Advanced[M]. Beijing: Tsinghua University Press, 2015: 225-228. | |
31 | 张德丰. MATLAB R2015b数值计算方法[M]. 北京: 清华大学出版社, 2017: 142-146. |
Zhang D F. MATLAB R2015b Numerical Calculation Method[M]. Beijing: Tsinghua University Press, 2017: 142-146. | |
32 | 吴国华, 朴香兰, 王玉军, 等. 添加剂强化石灰/石灰石烟气脱硫过程的应用及研究进展[J]. 环境科学动态, 2004, (3): 12-14. |
Wu G H, Piao X L, Wang Y J, et al. Application and research progress of additive-enhanced lime / limestone flue gas desulfurization process[J]. Environmental Science News, 2004, (3): 12-14. | |
1 | 武春锦, 吕武华, 梅毅, 等. 湿法烟气脱硫技术及运行经济性分析[J]. 化工进展, 2015, 34(12): 4368-4374. |
Wu C J, Lyu W H, Mei Y, et al. Wet flue gas desulfurization technology and economic analysis of operation[J]. Chemical Industry and Engineering Progress, 2015, 34(12): 4368-4374. | |
2 | 吴记保. 湿法烟气脱硫系统数学建模与仿真分析[D]. 重庆: 重庆大学, 2006. |
Wu J B. Mathematical modeling and simulation analysis of wet flue gas desulfurization system[D]. Chongqing: Chongqing University, 2006. | |
3 | 于明华, 李弘. 仿真技术的应用和发展[J].内蒙古科技与经济, 2007, (1): 67-69. |
Yu M H, Li H. Application and development of simulation technology[J]. Inner Mongolia Science Technology and Economy, 2007, (1): 67-69. | |
4 | 陈尔鲁. 湿法烟气脱硫过程建模与优化[D]. 杭州: 浙江大学, 2016. |
Chen E L. Modeling and optimization of wet flue gas desulfurization process[D]. Hangzhou: Zhejiang University, 2016. | |
5 | 展锦程, 冉景煜, 孙图星. 烟气脱硫吸收塔反应过程的数值模拟及试验研究[J].动力工程, 2008, (3): 433-437+446. |
Zhan J C, Ran J Y, Sun T X. Numerical simulation and experimental study of reaction process of flue gas desulfurization absorption tower[J]. Power Engineering, 2008, (3): 433-437+446. | |
6 | 石旻昊. 烟气脱硫过程净烟二氧化硫含量的动态仿真软件的研发[D]. 沈阳: 东北大学, 2017. |
Shi M H. Development of dynamic simulation software for net sulfur dioxide content in flue gas desulfurization process[D]. Shenyang: Northeastern University, 2017. | |
7 | 尚慧. 300 MW机组湿式石灰石/石膏烟气脱硫实时仿真系统研究[D]. 保定: 华北电力大学(河北), 2010. |
Shang H. Research on wet limestone/gypsum flue gas desulfurization real-time simulation system for 300 MW unit[D]. Baoding: North China Electric Power University (Hebei), 2010. | |
8 | 钟秦, 王娟, 陈迁乔, 等. 化工原理[M]. 北京: 国防工业出版社, 2001: 121. |
Zhong Q, Wang J, Chen Q Q, et al. Principles of Chemical Engineering[M]. Beijing: National Defense Industry Press, 2001: 121. | |
9 | 邓飞其, 刘洪伟, 冯昭枢, 等. 大型分布式迭代随机系统的均方渐近收敛性[J]. 华南理工大学学报(自然科版), 1998, (5): 130-135. |
Deng F Q, Liu H W, Feng Z S, et al. Mean square asymptotic convergence of large distributed iterative stochastic system[J]. Journal of South China University of Technology (Natural Science Edition), 1998, (5): 130-135. | |
10 | 鲍卫锋, 黄介生, 闫华, 等. 基于分布式参数模型的地下水数值模拟[J]. 农业工程学报, 2005, (5): 25-28. |
Bao W F, Huang J S, Yan H, et al. Numerical simulation of groundwater based on distributed parameter model [J]. Journal of Agricultural Engineering, 2005, (5): 25-28. | |
11 | 林永明. 大型石灰石-石膏湿法喷淋脱硫技术研究及工程应用[D]. 杭州: 浙江大学, 2006. |
Lin Y M. Research and engineering application of large-scale limestone-gypsum wet spray desulfurization technology[D]. Hangzhou: Zhejiang University, 2006. | |
12 | 吴文强, 李国敏, 陈求稳. 地下水数值模拟中分布式水文模型的耦合应用[J]. 勘察科学技术, 2009, (5): 48-51. |
Wu W Q, Li G M, Chen Q W. Coupling application of distributed hydrological model in groundwater numerical simulation[J]. Prospecting Science and Technology, 2009, (5): 48-51. | |
13 | 冯昭枢, 刘永清, 刘洪伟. 分布式迭代随机大系统的收敛性与稳定性[J]. 华南理工大学学报(自然科学版), 1994, (1): 23-26. |
Feng Z S, Liu Y Q, Liu H W. Convergence and stability of distributed iterative stochastic large-scale systems [J]. Journal of South China University of Technology (Natural Science Edition), 1994, (1): 23-26. | |
14 | Gutiérrez O F J. A simple realistic modeling of full-scale wet limestone FGD units[J]. Chemical Engineering Journal, 2010, 165(2): 426-439. |
15 | 张想. 湿法烟气脱硫吸收塔理论建模[D]. 北京: 华北电力大学, 2018. |
Zhang X. Theoretical modeling of wet flue gas desulfurization absorption tower[D]. Beijing: North China Electric Power University, 2018. | |
16 | Neveux T, Hagi H, Moullec Y L. Performance simulation of full-scale wet flue gas desulfurization for oxy-coal combustion [J]. Energy Procedia, 2014, (63): 463-470. |
17 | 王颖聪. 湿法脱硫烟气石膏雨成因分析及处理方案综述[J]. 华北电力技术, 2012, (10): 68-71+75. |
Wang Y C. Genesis analysis and treatment of wet desulfurization flue gas gypsum rain[J]. North China Electric Power Technology, 2012, (10): 68-71 + 75. | |
18 | 朱天乐, 李曜, 凌炫, 等. 湿式烟气脱硫中石灰石反应活性[J]. 环境科学, 2005, (6): 17-20. |
Zhu T L, Li Y, Ling X, et al. Reactive activity of limestone in wet flue gas desulfurization[J]. Environmental Science, 2005, (6): 17-20. | |
19 | Jia Y, Zhong Q, Fan X, et al. Modeling of ammonia-based wet flue gas desulfurization in the spray scrubber[J]. Korean Journal of Chemical Engineering, 2011, 28(4): 1058-1064. |
20 | 卓小芳. 石灰石/石膏湿法烟气脱硫系统仿真研究[D]. 重庆: 重庆大学, 2007. |
Zhuo X F. Simulation study of limestone/gypsum wet flue gas desulfurization system[D]. Chongqing: Chongqing University, 2007. | |
21 | 郎春雷. 湿式石灰石-石膏法烟气脱硫系统优化控制的仿真研究[D]. 保定: 华北电力大学(河北), 2007. |
Lang C L. Simulation study on optimal control of wet limestone-gypsum flue gas desulfurization system[D]. Baoding: North China Electric Power University (Hebei), 2007. | |
22 | 肖刚, 金保升, 刘继驰, 等. 烟气湿法脱硫用石灰石溶解速率定量分析[J]. 东南大学学报(自然科学版), 2008, 38(6): 1029-1033. |
Xiao G, Jin B S, Liu J C, et al. Quantitative analysis of limestone dissolution rate for flue gas wet desulfurization[J]. Journal of Southeast University (Natural Science Edition), 2008, 38(6): 1029-1033. | |
23 | 王坤. 逆流洗涤过程模型软件的研发[D]. 沈阳: 东北大学, 2011. |
Wang K. Development of countercurrent washing process model software [D]. Shenyang: Northeastern University, 2011. | |
24 | 钟秦. 燃煤烟气脱硫脱硝技术及工程实例[M]. 2版. 北京: 化学工业出版社, 2007: 85-86. |
Zhong Q. Desulfurization and Denitrification Technology and Engineering Example of Coal-fired Flue Gas[M]. 2nd ed. Beijing: Chemical Industry Press, 2007: 85-86. | |
25 | Zhao Z. Particle trajectory model desulfurization spray tower used in numerical simulation of flue gas [J]. Journal of Sol-Gel Science and Technology, 2005, (33): 19-24. |
26 | 严宣申, 王长富. 水溶液中离子平衡与化学反应[M]. 北京: 高等教育出版社, 1993: 63-66. |
Yan X S, Wang C F. Ion Balance and Chemical Reaction in Aqueous Solution[M]. Beijing: Higher Education Press, 1993: 63-66. | |
27 | 李振寰. 元素性质手册[M]. 石家庄: 河北人民出版社, 1984: 108+136. |
Li Z H. Element Nature Manual[M]. Shijiazhuang: Hebei People s Publishing House, 1984: 108+136. | |
28 | 周至祥, 段建中, 薛建明. 火电厂湿法烟气脱硫技术手册[M]. 北京: 中国电力出版社, 2006: 74-76. |
Zhou Z X, Duan J Z, Xue J M. Technical Manual for Wet Flue Gas Desulfurization in Thermal Power Plants[M]. Beijing: China Electric Power Press, 2006: 74-76. | |
29 | 王俊. 火力发电厂石灰石-石膏湿法脱硫系统优化运行研究[D]. 北京: 北京交通大学, 2010. |
Wang J. Research on optimal operation of limestone-gypsum wet desulfurization system in thermal power plant[D]. Beijing: Beijing Jiaotong University, 2010. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[3] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[4] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[5] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[6] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[7] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[8] | Laiming LUO, Jin ZHANG, Zhibin GUO, Haining WANG, Shanfu LU, Yan XIANG. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range [J]. CIESC Journal, 2023, 74(4): 1724-1734. |
[9] | Jieyuan ZHENG, Xianwei ZHANG, Jintao WAN, Hong FAN. Synthesis and curing kinetic analysis of eugenol-based siloxane epoxy resin [J]. CIESC Journal, 2023, 74(2): 924-932. |
[10] | Huan ZHOU, Mengli ZHANG, Qing HAO, Si WU, Jie LI, Cunbing XU. Process mechanism and dynamic behaviors of magnesium sulfate type carnallite converting into kainite [J]. CIESC Journal, 2022, 73(9): 3841-3850. |
[11] | Yujun MA, Xiangjun LIU. Theoretical studies of water recovery from flue gas by using ceramic membrane [J]. CIESC Journal, 2022, 73(9): 4103-4112. |
[12] | Yifang DONG, Yingying YU, Xuegong HU, Gang PEI. Electric field effect on wetting and capillary flow characteristics in vertical microgrooves [J]. CIESC Journal, 2022, 73(7): 2952-2961. |
[13] | Zihao QI, Wenqi ZHONG, Xi CHEN, Guanwen ZHOU, Xiaoliang ZHAO, Meijing XIN, Yi CHEN, Yongchang ZHU. Research on dynamic characteristics of cement raw meal decomposition process based on hybrid modeling [J]. CIESC Journal, 2022, 73(5): 2039-2051. |
[14] | Cheng ZHANG, Lizhi PAN, Yuan LI. Fault detection and diagnosis method based on weighted statistical feature KICA [J]. CIESC Journal, 2022, 73(2): 827-837. |
[15] | Ziyi CHI, Chengwei LIU, Yuling ZHANG, Xuegang LI, Wende XIAO. Reactor simulation and optimization for CO oxidative coupling to dimethyl oxalate reactions [J]. CIESC Journal, 2022, 73(11): 4974-4986. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||