CIESC Journal ›› 2020, Vol. 71 ›› Issue (6): 2547-2563.DOI: 10.11949/0438-1157.20200105
• Reviews and monographs • Previous Articles Next Articles
Received:
2020-02-03
Revised:
2020-03-24
Online:
2020-06-05
Published:
2020-06-05
Contact:
Zhonghua XIANG
通讯作者:
向中华
作者简介:
赵云(1984—),男,博士,讲师,基金资助:
CLC Number:
Yun ZHAO, Zhonghua XIANG. Progress of microfluidic synthesis of metal/covalent organic frameworks[J]. CIESC Journal, 2020, 71(6): 2547-2563.
赵云, 向中华. 微流控制备金属/共价有机框架功能材料研究进展[J]. 化工学报, 2020, 71(6): 2547-2563.
Add to citation manager EndNote|Ris|BibTeX
1 | Davis M E. Ordered porous materials for emerging applications[J]. Nature, 2002, 417(6891): 813-821. |
2 | Lee J, Farha O K, Roberts J, et al. Metal-organic framework materials as catalysts[J]. Chem. Soc. Rev., 2009, 38(5): 1450-1459. |
3 | Farha O K, Eryazici I, Jeong N C, et al. Metal-organic framework materials with ultrahigh surface areas: is the sky the limit?[J]. J. Am. Chem. Soc., 2012, 134(36): 15016-15021. |
4 | Furukawa H, Cordova K E, O’Keeffe M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149): 1230444. |
5 | Liu J, Chen L, Cui H, et al. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis[J]. Chem. Soc. Rev., 2014, 43(16): 6011-6061. |
6 | Shen K, Zhang L, Chen X, et al. Ordered macro-microporous metal-organic framework single crystals[J]. Science, 2018, 359(6372): 206-210. |
7 | Feng X, Ding X, Jiang D. Covalent organic frameworks[J]. Chem. Soc. Rev., 2012, 41(18): 6010-6022. |
8 | Colson J W, Dichtel W R. Rationally synthesized two-dimensional polymers[J]. Nat. Chem., 2013, 5(6): 453-465. |
9 | Ding S Y, Wang W. Covalent organic frameworks (COFs): from design to applications[J]. Chem. Soc. Rev., 2013, 42(2): 548-568. |
10 | Puthiaraj P, Lee Y R, Zhang S, et al. Triazine-based covalent organic polymers: design, synthesis and applications in heterogeneous catalysis[J]. J. Mater. Chem. A, 2016, 4(42): 16288-16311. |
11 | Segura J L, Mancheno M J, Zamora F. Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications[J]. Chem. Soc. Rev., 2016, 45(20): 5635-5671. |
12 | Rogge S M J, Bavykina A, Hajek J, et al. Metal-organic and covalent organic frameworks as single-site catalysts[J]. Chem. Soc. Rev., 2017, 46(11): 3134-3184. |
13 | Wang B, Côté A P, Furukawa H, et al. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs[J]. Nature, 2008, 453: 207. |
14 | Long J R, Yaghi O M. The pervasive chemistry of metal-organic frameworks[J]. Chem. Soc. Rev., 2009, 38(5): 1213-1214. |
15 | Stock N, Biswas S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites[J]. Chem. Rev., 2012, 112(2): 933-969. |
16 | Khan N A, Jhung S H. Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: rapid reaction, phase-selectivity, and size reduction[J]. Coord. Chem. Rev., 2015, 285: 11-23. |
17 | Ren J, Dyosiba X, Musyoka N M, et al. Review on the current practices and efforts towards pilot-scale production of metal-organic frameworks (MOFs)[J]. Coord. Chem. Rev., 2017, 352: 187-219. |
18 | Gangu K K, Maddila S, Mukkamala S B, et al. A review on contemporary metal–organic framework materials[J]. Inorg. Chim. Acta, 2016, 446: 61-74. |
19 | Xiang Z, Cao D. Porous covalent-organic materials: synthesis, clean energy application and design[J]. J. Mater. Chem. A, 2013, 1(8): 2691-2718. |
20 | Yue Y, Qiao Z A, Fulvio P F, et al. Template-free synthesis of hierarchical porous metal–organic frameworks[J]. J. Am. Chem. Soc., 2013, 135(26): 9572-9575. |
21 | Tan Y C, Zeng H C. Self-templating synthesis of hollow spheres of MOFs and their derived nanostructures[J]. Chem. Commun., 2016, 52(77): 11591-11594. |
22 | 林炳承, 秦建华. 微流控芯片实验室[M]. 北京: 科学出版社, 2006: 390. |
Lin B C, Qin J H. Laboratory on Microfluidic Chip[M]. Beijing: Science Press, 2006: 390. | |
23 | Abou‐Hassan A, Sandre O, Cabuil V. Microfluidics in inorganic chemistry[J]. Angew. Chem. Int. Ed., 2010, 49(36): 6268-6286. |
24 | Dummann G, Quittmann U, Gröschel L, et al. The capillary-microreactor: a new reactor concept for the intensification of heat and mass transfer in liquid-liquid reactions[J]. Catal. Today, 2003, 79: 433-439. |
25 | Mora M F, Greer F, Stockton A M, et al. Toward total automation of microfluidics for extraterrestial in situ analysis[J]. Anal. Chem., 2011, 83(22): 8636-8641. |
26 | Marre S, Park J, Rempel J, et al. Supercritical continuous‐microflow synthesis of narrow size distribution quantum dots[J]. Adv. Mater., 2008, 20(24): 4830-4834. |
27 | Chan E M, Mathies R A, Alivisatos A P. Size-controlled growth of CdSe nanocrystals in microfluidic reactors[J]. Nano Lett., 2003, 3(2): 199-201. |
28 | Wang H, Nakamura H, Uehara M, et al. Preparation of titania particles utilizing the insoluble phase interface in a microchannel reactor[J]. Chem. Commun., 2002, 14: 1462-1463. |
29 | Hoang P H, Park H, Kim D P. Ultrafast and continuous synthesis of unaccommodating inorganic nanomaterials in droplet- and ionic liquid-assisted microfluidic system[J]. J. Am. Chem. Soc., 2011, 133(37): 14765-14770. |
30 | Karnik R, Gu F, Basto P, et al. Microfluidic platform for controlled synthesis of polymeric nanoparticles[J]. Nano Lett., 2008, 8(9): 2906-2912. |
31 | Valencia P M, Pridgen E M, Rhee M, et al. Microfluidic platform for combinatorial synthesis and optimization of targeted nanoparticles for cancer therapy[J]. ACS Nano, 2013, 7(12): 10671-10680. |
32 | Hoang P H, Yoon K B, Kim D P. Synthesis of hierarchically porous zeolite a crystals with uniform particle size in a droplet microreactor[J]. RSC Adv., 2012, 2(12): 5323-5328. |
33 | Yu L, Pan Y, Wang C, et al. A two-phase segmented microfluidic technique for one-step continuous versatile preparation of zeolites[J]. Chem. Eng. J., 2013, 219: 78-85. |
34 | Zhao Y, Singh A, Jang S, et al. Continuous-flow synthesis of functional carbonaceous particles from biomass under hydrothermal carbonization[J]. J. Flow Chem., 2014, 4(4): 195-199. |
35 | Nightingale A M, deMello J C. Segmented flow reactors for nanocrystal synthesis[J]. Adv. Mater., 2013, 25(13): 1813-1821. |
36 | Li H, Eddaoudi M, O'Keeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402: 276. |
37 | Huang X, Zhang J, Chen X. [Zn(Bim)2]·(H2O)1.67: a metal-organic open-framework with sodalite topology[J]. Chin. Sci. Bull., 2003, 48(15): 1531-1534. |
38 | Banerjee R, Phan A, Wang B, et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture[J]. Science, 2008, 319(5865): 939-943. |
39 | Echaide-Górriz C, Clément C, Cacho-Bailo F, et al. New strategies based on microfluidics for the synthesis of metal–organic frameworks and their membranes[J]. J. Mater. Chem. A, 2018, 6(14): 5485-5506. |
40 | Song H, Tice J D, Ismagilov R F. A microfluidic system for controlling reaction networks in time[J]. Angew. Chem., 2003, 115(7): 792-796. |
41 | Teh S Y, Lin R, Hung L H, et al. Droplet microfluidics[J]. Lab on a Chip, 2008, 8(2): 198-220. |
42 | Song H, Chen D L, Ismagilov R F. Reactions in droplets in microfluidic channels[J]. Angew. Chem. Int. Ed., 2006, 45(44): 7336-7356. |
43 | Song H, Bringer M R, Tice J D, et al. Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels[J]. Appl. Phys. Lett., 2003, 83(22): 4664-4666. |
44 | Faustini M, Kim J, Jeong G Y, et al. Microfluidic approach toward continuous and ultrafast synthesis of metal–organic framework crystals and hetero structures in confined microdroplets[J]. J. Am. Chem. Soc., 2013, 135(39): 14619-14626. |
45 | Farrusseng D. Metal-Organic Frameworks: Applications from Catalysis to Gas Storage[M]. Wiley, 2011. |
46 | Paseta L, Seoane B, Julve D, et al. Accelerating the controlled synthesis of metal-organic frameworks by a microfluidic approach: a nanoliter continuous reactor[J]. ACS Applied Materials & Interfaces, 2013, 5(19): 9405-9410. |
47 | 赵云, 向中华. 液滴式微流控芯片制备沸石咪唑骨架材料[J]. 科学通报, 2018, 63: 3658-3666. |
Zhao Y, Xiang Z H. Synthesis of zeolitic imidazolate frameworks in droplet microfluidic system[J]. Chinese Sci. Bull., 2018, 63: 3658-3666. | |
48 | Lee Y R, Jang M S, Cho H Y, et al. Zif-8: a comparison of synthesis methods[J]. Chem. Eng. J., 2015, 271: 276-280. |
49 | Wang Y, Li L, Dai P, et al. Missing-node directed synthesis of hierarchical pores on a zirconium metal-organic framework with tunable porosity and enhanced surface acidity via a microdroplet flow reaction[J]. J. Mater. Chem. A, 2017, 5(42): 22372-22379. |
50 | Polyzoidis A, Altenburg T, Schwarzer M, et al. Continuous microreactor synthesis of ZIF-8 with high space-time-yield and tunable particle size[J]. Chem. Eng. J., 2016, 283: 971-977. |
51 | 盛炳琛, 李从, 刘颖雅, 等. 微通道连续合成 UiO-66 系列改性MOF材料[J]. 高等学校化学学报, 2019, 40(7): 1365-1373. |
Sheng B C, Li C, Liu Y Y, et al. Microfluidic synthesis of UiO-66 metal-organic frameworks modified with different functional groups[J]. Chemical Journal of Chinese Universities, 2019, 40(7): 1365-1373. | |
52 | Rubio-Martinez M, Batten M P, Polyzos A, et al. Versatile, high quality and scalable continuous flow production of metal-organic frameworks[J]. Sci. Rep., 2014, 4(1): 5443. |
53 | Huo J, Brightwell M, El Hankari S, et al. A versatile, industrially relevant, aqueous room temperature synthesis of HKUST-1 with high space-time yield[J]. J. Mater. Chem. A, 2013, 1(48): 15220-15223. |
54 | Li F, Duan C, Zhang H, et al. Hierarchically porous metal-organic frameworks: green synthesis and high space-time yield[J]. Ind. Eng. Chem., 2018, 57(28): 9136-9143. |
55 | Cho H Y, Kim J, Kim S N, et al. High yield 1-L scale synthesis of ZIF-8 via a sonochemical route[J]. Microporous Mesoporous Mater., 2013, 169: 180-184. |
56 | Lin J B, Lin R B, Cheng X N, et al. Solvent/additive-free synthesis of porous/zeolitic metal azolate frameworks from metal oxide/hydroxide[J]. Chem. Commun., 2011, 47(32): 9185-9187. |
57 | Witters D, Vergauwe N, Ameloot R, et al. Digital microfluidic high‐throughput printing of single metal‐organic framework crystals[J]. Adv. Mater., 2012, 24(10): 1316-1320. |
58 | Witters D, Vermeir S, Puers R, et al. Miniaturized layer-by-layer deposition of metal–organic framework coatings through digital microfluidics[J]. Chem. Mater., 2013, 25(7): 1021-1023. |
59 | Günther A, Jensen K F. Multiphase microfluidics: from flow characteristics to chemical and materials synthesis[J]. Lab Chip, 2006, 6(12): 1487-1503. |
60 | Ameloot R, Vermoortele F, Vanhove W, et al. Interfacial synthesis of hollow metal-organic framework capsules demonstrating selective permeability[J]. Nat. Chem., 2011, 3: 382. |
61 | Jeong G Y, Ricco R, Liang K, et al. Bioactive MIL-88a framework hollow spheres via interfacial reaction in-droplet microfluidics for enzyme and nanoparticle encapsulation[J]. Chem. Mater., 2015, 27(23): 7903-7909. |
62 | Wu S, Xin Z, Zhao S, et al. High-throughput droplet microfluidic synthesis of hierarchical metal-organic framework nanosheet microcapsules[J]. Nano Research, 2019, 12(11): 2736-2742. |
63 | Brown A J, Brunelli N A, Eum K, et al. Interfacial microfluidic processing of metal-organic framework hollow fiber membranes[J]. Science, 2014, 345(6192): 72-75. |
64 | Biswal B P, Bhaskar A, Banerjee R, et al. Selective interfacial synthesis of metal–organic frameworks on a polybenzimidazole hollow fiber membrane for gas separation[J]. Nanoscale, 2015, 7(16): 7291-7298. |
65 | Cote A P, Benin A I, Ockwig N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166-1170. |
66 | Du Y, Yang H, Whiteley J M, et al. Ionic covalent organic frameworks with spiroborate linkage[J]. Angew. Chem. Int. Ed., 2016, 55(5): 1737-1741. |
67 | El-Kaderi H M, Hunt J R, Mendoza-Cortés J L, et al. Designed synthesis of 3D covalent organic frameworks[J]. Science, 2007, 316(5822): 268. |
68 | Uribe-Romo F J, Hunt J R, Furukawa H, et al. A crystalline imine-linked 3-D porous covalent organic framework[J]. J. Am. Chem. Soc., 2009, 131(13): 4570-4571. |
69 | Fang Q, Zhuang Z, Gu S, et al. Designed synthesis of large-pore crystalline polyimide covalent organic frameworks[J]. Nat. Commun., 2014, 5(1): 4503. |
70 | Jin E, Asada M, Xu Q, et al. Two-dimensional sp2 carbon–conjugated covalent organic frameworks[J]. Science, 2017, 357(6352): 673. |
71 | Cooper A I. Conjugated microporous polymers[J]. Adv. Mater., 2009, 21(12): 1291-1295. |
72 | Das S, Heasman P, Ben T, et al. Porous organic materials: strategic design and structure–function correlation[J]. Chem. Rev., 2017, 117(3): 1515-1563. |
73 | Ben T, Ren H, Ma S, et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area[J]. Angew. Chem. Int. Ed., 2009, 48(50): 9457-9460. |
74 | Luo Y, Li B, Wang W, et al. Hypercrosslinked aromatic heterocyclic microporous polymers: a new class of highly selective CO2 capturing materials[J]. Adv. Mater., 2012, 24(42): 5703-5707. |
75 | Du N, Park H B, Dal-Cin M M, et al. Advances in high permeability polymeric membrane materials for CO2 separations[J]. Energy Environ. Sci., 2012, 5(6): 7306-7322. |
76 | Xiang Z, Cao D. Synthesis of luminescent covalent-organic polymers for detecting nitroaromatic explosives and small organic molecules[J]. Macromol. Rapid Commun., 2012, 33(14): 1184-1190. |
77 | Xiang Z, Mercado R, Huck J M, et al. Systematic tuning and multifunctionalization of covalent organic polymers for enhanced carbon capture[J]. J. Am. Chem. Soc., 2015, 137(41): 13301-13307. |
78 | Peng P, Zhou Z, Guo J, et al. Well-defined 2D covalent organic polymers for energy electrocatalysis[J]. ACS Energy Letters, 2017, 2(6): 1308-1314. |
79 | Peng Y, Wong W K, Hu Z, et al. Room temperature batch and continuous flow synthesis of water-stable covalent organic frameworks (COFs)[J]. Chem. Mater., 2016, 28(14): 5095-5101. |
80 | Zhao Y, Liao Z, Xiang Z. Microfluidics for synthesis and morphology control of hierarchical porous covalent organic polymer monolith[J]. Chem. Eng. Sci., 2019, 195: 801-809. |
81 | Singh V, Jang S, Vishwakarma N K, et al. Intensified synthesis and post-synthetic modification of covalent organic frameworks using a continuous flow of microdroplets technique[J]. Npg Asia Mater., 2018, 10: e456. |
82 | Rodríguez-San-Miguel D, Abrishamkar A, Navarro J A R, et al. Crystalline fibres of a covalent organic framework through bottom-up microfluidic synthesis[J]. Chem. Commun., 2016, 52(59): 9212-9215. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Xuanzhi HE, Yongqing HE, Guiye WEN, Feng JIAO. Ferrofluid droplet neck self-similar breakup behavior [J]. CIESC Journal, 2023, 74(7): 2889-2897. |
[3] | Chunyu LIU, Huanyu ZHOU, Yue MA, Changtao YUE. Drying characteristics and mathematical model of CaO-conditioned oil sludge [J]. CIESC Journal, 2023, 74(7): 3018-3027. |
[4] | Zhen LONG, Jinhang WANG, Junjie REN, Yong HE, Xuebing ZHOU, Deqing LIANG. Experimental study on inhibition effect of natural gas hydrate formation by mixing ionic liquid with PVCap [J]. CIESC Journal, 2023, 74(6): 2639-2646. |
[5] | Yongyao SUN, Qiuying GAO, Wenguang ZENG, Jiaming WANG, Yifei CHEN, Yongzhe ZHOU, Gaohong HE, Xuehua RUAN. Design and optimization of membrane-based integration process for advanced utilization of associated gases in N2-EOR oilfields [J]. CIESC Journal, 2023, 74(5): 2034-2045. |
[6] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
[7] | Lu DENG, Xiaojie JU, Wenjie ZHANG, Rui XIE, Wei WANG, Zhuang LIU, Dawei PAN, Liangyin CHU. Controllable preparation of radioactive chitosan embolic microspheres by microfluidic method [J]. CIESC Journal, 2023, 74(4): 1781-1794. |
[8] | Qian LIU, Yu CAO, Qi ZHOU, Jingshan MU, Wei LI. Design of Ziegler-Natta catalyst modified with pore structure and preparation of UHMWPE with high impact resistance and low entanglement [J]. CIESC Journal, 2023, 74(3): 1092-1101. |
[9] | Hao CHEN, Yijuan TIAN, Xuejun QUAN, Ziwen JIANG, Gang LI. Decomposition behaviour of chromite in the HCl-HF system [J]. CIESC Journal, 2023, 74(3): 1161-1174. |
[10] | Jinlin MENG, Yu WANG, Qunfeng ZHANG, Guanghua YE, Xinggui ZHOU. Pore network model of low-temperature nitrogen adsorption-desorption in mesoporous materials [J]. CIESC Journal, 2023, 74(2): 893-903. |
[11] | Xintong HUANG, Yuhao GENG, Hengyuan LIU, Zhuo CHEN, Jianhong XU. Research progress on new functional nanoparticles prepared by microfluidic technology [J]. CIESC Journal, 2023, 74(1): 355-364. |
[12] | Xiang GUO, Jinshuo QIAO, Zhenhua WANG, Wang SUN, Kening SUN. Progress of structure for carbon-fueled solid oxide fuel cells [J]. CIESC Journal, 2023, 74(1): 290-302. |
[13] | Xuemei LANG, Liumei YAO, Shuanshi FAN, Gang LI, Yanhong WANG. Numerical simulation of methane hydrate formation and heat transfer in porous materials [J]. CIESC Journal, 2022, 73(9): 3851-3860. |
[14] | Yuehui HOU, Xuan LIU, Yingjiang LIAN, Mei HAN, Chaoqun YAO, Guangwen CHEN. Synthesis process of trinitrophloroglucinol in an ultrasonic microreactor [J]. CIESC Journal, 2022, 73(8): 3597-3607. |
[15] | Xiaoqiang FAN, Zhengliang HUANG, Jingyuan SUN, Jingdai WANG, Xiaofei WANG, Xiaobo HU, Guodong HAN, Yongrong YANG, Wenqing WU. Development of cloudy gas-liquid fluidized bed ethylene polymerization process and high performance products [J]. CIESC Journal, 2022, 73(6): 2742-2747. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||