CIESC Journal ›› 2020, Vol. 71 ›› Issue (6): 2564-2585.DOI: 10.11949/0438-1157.20200107
• Reviews and monographs • Previous Articles Next Articles
Yan JIN1(),Qian YANG2,Wenbin ZHAO1,Baoshan HU1()
Received:
2020-02-03
Revised:
2020-04-08
Online:
2020-06-05
Published:
2020-06-05
Contact:
Baoshan HU
通讯作者:
胡宝山
作者简介:
金燕(1989—),女,硕士研究生,实验师,基金资助:
CLC Number:
Yan JIN, Qian YANG, Wenbin ZHAO, Baoshan HU. Catalytic reaction system for controllable synthesis of graphene with chemical vapor deposition[J]. CIESC Journal, 2020, 71(6): 2564-2585.
金燕, 杨倩, 赵文斌, 胡宝山. 石墨烯化学气相沉积法可控制备的催化反应体系研究[J]. 化工学报, 2020, 71(6): 2564-2585.
Add to citation manager EndNote|Ris|BibTeX
1 | Stoller M D, Park S, Zhu Y, et al. Graphene-based ultracapacitors[J]. Nano Letters, 2008, 8(10): 3498-3502. |
2 | Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308. |
3 | Stauber T, Peres N M R, Geim A K. Optical conductivity of graphene in the visible region of the spectrum[J]. Physical Review B, 2008, 78(8): 085432. |
4 | Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388. |
5 | Morozov S V, Novoselov K S, Katsnelson M I, et al. Giant intrinsic carrier mobilities in graphene and its bilayer[J]. Physical Review Letters, 2008, 100(1): 016602. |
6 | Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902-907. |
7 | Partoens B, Peeters F M. From graphene to graphite: electronic structure around the K point[J]. Physical Review B, 2006, 74(7): 075404. |
8 | Oostinga J B, Heersche H B, Liu X, et al. Gate-induced insulating state in bilayer graphene devices[J]. Nature Materials, 2008, 7(2): 151-157. |
9 | Alexeev E M, Ruiz-Tijerina D A, Danovich M, et al. Resonantly hybridized excitons in moire superlattices in van der Waals heterostructures[J]. Nature, 2019, 567(7746): 81-86. |
10 | Cao Y, Fatemi V, Fang S, et al. Unconventional superconductivity in magic-angle graphene superlattices[J]. Nature, 2018, 556(7699): 43-50. |
11 | Cao Y, Fatemi V, Demir A, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices[J]. Nature, 2018, 556(7699): 80-84. |
12 | Somani P R, Somani S P, Umeno M. Planer nano-graphenes from camphor by CVD[J]. Chemical Physics Letters, 2006, 430(1/2/3): 56-59. |
13 | Nield D, Kuznetsov A. Forced convection with slip-flow in a channel or duct occupied by a hyperporous medium saturated by a rarefied gas[J]. Transport in Porous Media, 2006, 64(2): 161-170. |
14 | Xu K, Li Z. Microchannel flow in the slip regime: gas-kinetic BGK-Burnett solutions[J]. Journal of Fluid Mechanics, 2004, 513: 87-110. |
15 | Bong H, Jo S B, Kang B, et al. Graphene growth under Knudsen molecular flow on a confined catalytic metal coil[J]. Nanoscale, 2015, 7(4): 1314-1324. |
16 | Lewis A M, Derby B, Kinloch I A. Influence of gas phase equilibria on the chemical vapor deposition of graphene[J]. ACS Nano, 2013, 7(4): 3104-3117. |
17 | Li G, Huang S H, Li Z. Gas-phase dynamics in graphene growth by chemical vapour deposition[J]. Physical Chemistry Chemical Physics, 2015, 17(35): 22832-22836. |
18 | Zhang X, Wang L, Xin J, et al. Role of hydrogen in graphene chemical vapor deposition growth on a copper surface[J]. Journal of the American Chemical Society, 2014, 136(8): 3040-3047. |
19 | Hao Y, Bharathi M, Wang L, et al. The role of surface oxygen in the growth of large single-crystal graphene on copper[J]. Science, 2013, 342(6159): 720-723. |
20 | Li X, Cai W, Colombo L, et al. Evolution of graphene growth on Ni and Cu by carbon isotope labeling[J]. Nano Letters, 2009, 9(12): 4268-4272. |
21 | Wu T, Zhang X, Yuan Q, et al. Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu-Ni alloys[J]. Nature Materials, 2016, 15(1): 43-47. |
22 | Ma T, Liu Z, Wen J, et al. Tailoring the thermal and electrical transport properties of graphene films by grain size engineering[J]. Nature Communications, 2017, 8: 14486. |
23 | Braeuninger-Weimer P, Brennan B, Pollard A J, et al. Understanding and controlling Cu-catalyzed graphene nucleation: the role of impurities, roughness, and oxygen scavenging[J]. Chemistry of Materials, 2016, 28(24): 8905-8915. |
24 | Li Z, Zhang W, Fan X, et al. Graphene thickness control via gas-phase dynamics in chemical vapor deposition[J]. The Journal of Physical Chemistry C, 2012, 116(19): 10557-10562. |
25 | Shu H, Tao X M, Ding F. What are the active carbon species during graphene chemical vapor deposition growth?[J]. Nanoscale, 2015, 7(5): 1627-1634. |
26 | Ago H, Ogawa Y, Tsuji M, et al. Catalytic growth of graphene: toward large-area single-crystalline graphene[J]. The Journal of Physical Chemistry Letters, 2012, 3(16): 2228-2236. |
27 | Zhang X, Ning J, Li X, et al. Hydrogen-induced effects on the CVD growth of high-quality graphene structures[J]. Nanoscale, 2013, 5(18): 8363-8366. |
28 | Choi J H, Li Z, Cui P, et al. Drastic reduction in the growth temperature of graphene on copper via enhanced London dispersion force[J]. Scientific Reports, 2013, 3: 1925. |
29 | Li Z, Wu P, Wang C, et al. Low-temperature growth of graphene by chemical vapor deposition using solid and liquid carbon sources[J]. ACS Nano, 2011, 5(4): 3385-3390. |
30 | Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932): 1312-1314. |
31 | Gao L, Guest J R, Guisinger N P. Epitaxial graphene on Cu(111)[J]. Nano Letters, 2010, 10(9): 3512-3516. |
32 | Yang M, Sasaki S, Suzuki K, et al. Control of the nucleation and quality of graphene grown by low-pressure chemical vapor deposition with acetylene[J]. Applied Surface Science, 2016, 366: 219-226. |
33 | Wirtz C, Lee K, Hallam T, et al. Growth optimisation of high quality graphene from ethene at low temperatures[J]. Chemical Physics Letters, 2014, 595: 192-196. |
34 | Molina-Jiron C, Chellali M R, Kumar C N S, et al. Direct conversion of CO2 to multi-layer graphene using Cu-Pd alloys[J]. ChemSusChem, 2019, 12(15): 3509-3514. |
35 | Faggio G, Capasso A, Messina G, et al. High-temperature growth of graphene films on copper foils by ethanol chemical vapor deposition[J].The Journal of Physical Chemistry C, 2013, 117(41): 21569-21576. |
36 | Gadipelli S, Calizo I, Ford J, et al. A highly practical route for large-area, single layer graphene from liquid carbon sources such as benzene and methanol[J]. Journal of Materials Chemistry, 2011, 21(40): 16057-16065. |
37 | Jang J, Son M, Chung S, et al. Low-temperature-grown continuous graphene films from benzene by chemical vapor deposition at ambient pressure[J]. Scientific Reports, 2015, 5: 17955. |
38 | Coraux J, diaye A T N, Busse C, et al. Structural coherency of graphene on Ir(111)[J]. Nano Letters, 2008, 8(2): 565-570. |
39 | Ji H, Hao Y, Ren Y, et al. Graphene growth using a solid carbon feedstock and hydrogen[J]. ACS Nano, 2011, 5(9): 7656-7661. |
40 | Sun Z, Yan Z, Yao J, et al. Growth of graphene from solid carbon sources[J]. Nature, 2010, 468(7323): 549-552. |
41 | Wu T, Ding G, Shen H, et al. Triggering the continuous growth of graphene toward millimeter-sized grains[J]. Advanced Functional Materials, 2013, 23(2): 198-203. |
42 | Yang Q, Hu B, Jin Y, et al. Regulating surficial catalysis mechanism of copper metal by manipulating reactive intermediate for growth of homogenous bernal-stacked bilayer graphene[J]. Advanced Materials Interfaces, 2017, 4(17): 1700415. |
43 | Losurdo M, Giangregorio M M, Capezzuto P, et al. Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure[J]. Physical Chemistry Chemical Physics, 2011, 13(46): 20836-20843. |
44 | Katz L, Guinan M, Borg R J. Diffusion of H2, D2, and T2 in single-crystal Ni and Cu[J]. Physical Review B: Solid State, 1971, 4(2): 330-341. |
45 | Akhtar F, Dabrowski J, Lisker M, et al. Large-scale chemical vapor deposition of graphene on polycrystalline nickel films: effect of annealing conditions[J]. Thin Solid Films, 2019, 690: 137565. |
46 | Shin Y C, Kong J. Hydrogen-excluded graphene synthesis via atmospheric pressure chemical vapor deposition[J]. Carbon, 2013, 59: 439-447. |
47 | Jung D H, Kang C, Kim M, et al. Effects of hydrogen partial pressure in the annealing process on graphene growth[J]. The Journal of Physical Chemistry C, 2014, 118(7): 3574-3580. |
48 | Wang H, Wang G, Bao P, et al. Controllable synthesis of submillimeter single-crystal monolayer graphene domains on copper foils by suppressing nucleation[J]. Journal of the American Chemical Society, 2012, 134(8): 3627-3630. |
49 | Yang F, Liu Y, Wu W, et al. A facile method to observe graphene growth on copper foil[J]. Nanotechnology, 2012, 23(47): 475705. |
50 | Ibrahim A, Akhtar S, Atieh M, et al. Effects of annealing on copper substrate surface morphology and graphene growth by chemical vapor deposition[J]. Carbon, 2015, 94: 369-377. |
51 | Hu B, Jin Y, Guan D, et al. H2-dependent carbon dissolution and diffusion-out in graphene chemical vapor deposition growth[J]. The Journal of Physical Chemistry C, 2015, 119(42): 24124-24131. |
52 | Jin Y, Hu B, Wei Z, et al. Roles of H2 in annealing and growth times of graphene CVD synthesis over copper foil[J]. Journal of Materials Chemistry A, 2014, 2(38): 16208-16216. |
53 | Wu B, Geng D, Xu Z, et al. Self-organized graphene crystal patterns[J]. NPG Asia Materials, 2013, 5: e36. |
54 | Yan Z, Liu Y, Lin J, et al. Hexagonal graphene onion rings[J]. Journal of the American Chemical Society, 2013, 135(29): 10755-10762. |
55 | Han G H, Guenes F, Bae J J, et al. Influence of copper morphology in forming nucleation seeds for graphene growth[J]. Nano Letters, 2011, 11(10): 4144-4148. |
56 | Jacobberger R M, Arnold M S. Graphene growth dynamics on epitaxial copper thin films[J]. Chemistry of Materials, 2013, 25(6): 871-877. |
57 | Vlassiouk I, Regmi M, Fulvio P F, et al. Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene[J]. ACS Nano, 2011, 5(7): 6069-6076. |
58 | Mitchell I, Page A J. The influence of hydrogen on transition metal-catalysed graphene nucleation[J]. Carbon, 2018, 128: 215-223. |
59 | Liu L, Zhou H, Cheng R, et al. High-yield chemical vapor deposition growth of high-quality large-area AB-stacked bilayer graphene[J]. ACS Nano, 2012, 6(9): 8241-8249. |
60 | Liu Q, Gong Y, Wilt J S, et al. Synchronous growth of AB-stacked bilayer graphene on Cu by simply controlling hydrogen pressure in CVD process[J]. Carbon, 2015, 93: 199-206. |
61 | Li X, Magnuson C W, Venugopal A, et al. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper[J]. Journal of the American Chemical Society, 2011, 133(9): 2816-2819. |
62 | Li K, He C, Jiao M, et al. A first-principles study on the role of hydrogen in early stage of graphene growth during the CH4 dissociation on Cu(111) and Ni(111) surfaces[J]. Carbon, 2014, 74: 255-265. |
63 | Jung D H, Kang C, Yoon D, et al. Anisotropic behavior of hydrogen in the formation of pentagonal graphene domains[J]. Carbon, 2015, 89: 242-248. |
64 | Choubak S, Levesque P L, Gaufres E, et al. Graphene CVD: interplay between growth and etching on morphology and stacking by hydrogen and oxidizing impurities[J]. The Journal of Physical Chemistry C, 2014, 118(37): 21532-21540. |
65 | Yang X, Hu B, Jin Y, et al. Insight into CO2 etching behavior for efficiently nanosizing graphene[J]. Advanced Materials Interfaces, 2017, 4(10): 1601065. |
66 | Strudwick A J, Weber N E, Schwab M G, et al. Chemical vapor deposition of high quality graphene films from carbon dioxide atmospheres[J]. ACS Nano, 2015, 9(1): 31-42. |
67 | Zhang J, Ha K, Lin L, et al. Large-area synthesis of superclean graphene via selective etching of amorphous carbon with carbon dioxide[J]. Angewandte Chemie-International Edition, 2019, 58(41): 14446-14451. |
68 | Hao Y, Wang L, Liu Y, et al. Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene[J]. Nature Nanotechnology, 2016, 11(5): 426-431. |
69 | Kraus J, Boebel L, Zwaschka G, et al. Understanding the reaction kinetics to optimize graphene growth on Cu by chemical vapor deposition[J]. Annalen Der Physik, 2017, 529(11): 1700029. |
70 | Lin L, Sun L, Zhang J, et al. Rapid growth of large single-crystalline graphene via second passivation and multistage carbon supply[J]. Advanced Materials, 2016, 28(23): 4671-4677. |
71 | Zhou H, Yu W J, Liu L, et al. Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene[J]. Nature Communications, 2013, 4: 2096. |
72 | Rasool H I, Song E B, Allen M J, et al. Continuity of graphene on polycrystalline copper[J]. Nano Letters, 2011, 11(1): 251-256. |
73 | Rasool H I, Song E B, Mecklenburg M, et al. Atomic-scale characterization of graphene grown on copper (100) single crystals[J]. Journal of the American Chemical Society, 2011, 133(32): 12536-12543. |
74 | Nie S, Wofford J M, Bartelt N C, et al. Origin of the mosaicity in graphene grown on Cu(111)[J]. Physical Review B, 2011, 84(15): 155425. |
75 | Luo Z, Lu Y, Singer D W, et al. Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure[J]. Chemistry of Materials, 2011, 23(6): 1441-1447. |
76 | Griep M H, Sandoz-Rosado E, Tumlin T M, et al. Enhanced graphene mechanical properties through ultrasmooth copper growth substrates[J]. Nano Letters, 2016, 16(3): 1657-1662. |
77 | Kim S M, Hsu A, Lee Y H, et al. The effect of copper pre-cleaning on graphene synthesis[J]. Nanotechnology, 2013, 24(36): 365602. |
78 | Hayashi K, Sato S, Ikeda M, et al. Selective graphene formation on copper twin crystals[J]. Journal of the American Chemical Society, 2012, 134(30): 12492-12498. |
79 | Vlassiouk I, Smirnov S, Regmi M, et al. Graphene nucleation density on copper: fundamental role of background pressure[J]. The Journal of Physical Chemistry C, 2013, 117(37): 18919-18926. |
80 | Tian J, Hu B, Wei Z, et al. Surface structure deduced differences of copper foil and film for graphene CVD growth[J]. Applied Surface Science, 2014, 300: 73-79. |
81 | Hu B, Ago H, Orofeo C M, et al. On the nucleation of graphene by chemical vapor deposition[J]. New Journal of Chemistry, 2012, 36(1): 73-77. |
82 | Wood J D, Schmucker S W, Lyons A S, et al. Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition[J]. Nano Letters, 2011, 11(11): 4547-4554. |
83 | Geng D, Gao E, Wang H, et al. Large-area growth of five-lobed and triangular graphene grains on textured Cu substrate[J]. Advanced Materials Interfaces, 2016, 3(18): 1600347. |
84 | Hu B, Ago H, Ito Y, et al. Epitaxial growth of large-area single-layer graphene over Cu(111)/sapphire by atmospheric pressure CVD[J]. Carbon, 2012, 50(1): 57-65. |
85 | Ogawa Y, Hu B, Orofeo C M, et al. Domain structure and boundary in single-layer graphene grown on Cu(111) and Cu(100) films[J]. The Journal of Physical Chemistry Letters, 2012, 3(2): 219-226. |
86 | Hu B, Wei Z, Ago H, et al. Effects of substrate and transfer on CVD-grown graphene over sapphire-induced Cu films[J]. Science China Chemistry, 2014, 57(6): 895-901. |
87 |
Hou Y, Wang B, Zhan L, et al. Surface crystallographic structure insensitive growth of oriented graphene domains on Cu substrates[J]. Materials Today, 2020, DOI: 10.1016/j.mattod.2019.12.001.
DOI URL |
88 | Magnuson C W, Kong X, Ji H, et al. Copper oxide as a “self-cleaning” substrate for graphene growth[J]. Journal of Materials Research, 2014, 29(3): 403-409. |
89 | Luo D, Wang M, Li Y, et al. Adlayer-free large-area single crystal graphene grown on a Cu(111) foil[J]. Advanced Materials, 2019, 31(35): 1903615. |
90 | Çelik Y, Escoffier W, Yang M, et al. Relationship between heating atmosphere and copper foil impurities during graphene growth via low pressure chemical vapor deposition[J]. Carbon, 2016, 109: 529-541. |
91 | Pang J, Bachmatiuk A, Fu L, et al. Oxidation as a means to remove surface contaminants on Cu foil prior to graphene growth by chemical vapor deposition[J]. The Journal of Physical Chemistry C, 2015, 119(23): 13363-13368. |
92 | Zhao W, Hu B, Yang Q, et al. Synergetic interaction between copper and carbon impurity induces low temperature growth of highly-defective graphene for enhanced electrochemical performance[J]. Carbon, 2019, 150: 371-377. |
93 | Meca E, Lowengrub J, Kim H, et al. Epitaxial graphene growth and shape dynamics on copper: phase-field modeling and experiments[J]. Nano Letters, 2013, 13(11): 5692-5697. |
94 | Holmen A, Olsvik O, Rokstad O. Pyrolysis of natural gas: chemistry and process concepts[J]. Fuel Processing Technology, 1995, 42(2/3): 249-267. |
95 | Zhang W, Wu P, Li Z, et al. First-principles thermodynamics of graphene growth on Cu surfaces[J]. The Journal of Physical Chemistry C, 2011, 115(36): 17782-17787. |
96 | Liang T, Luan C, Chen H, et al. Exploring oxygen in graphene chemical vapor deposition synthesis[J]. Nanoscale, 2017, 9(11): 3719-3735. |
97 | Habib M R, Liang T, Yu X, et al. A review of theoretical study of graphene chemical vapor deposition synthesis on metals: nucleation, growth, and the role of hydrogen and oxygen[J]. Reports on Progress in Physics, 2018, 81(3): 036501. |
98 | Li K, He C, Jiao M, et al. Theoretical insights on the C2Hy formation mechanism during CH4 dissociation on Cu(100) surface[J]. The Journal of Physical Chemistry C, 2014, 118(31): 17662-17669. |
99 | Oberg H, Nestsiarenka Y, Matsuda A, et al. Adsorption and cyclotrimerization kinetics of C2H2 at a Cu(110) surface[J]. The Journal of Physical Chemistry C, 2012, 116(17): 9550-9560. |
100 | Treier M, Pignedoli C A, Laino T, et al. Surface-assisted cyclodehydrogenation provides a synthetic route towards easily processable and chemically tailored nanographenes[J]. Nature Chemistry, 2011, 3(1): 61-67. |
101 | van de Walle C G, Neugebauer J. First-principles surface phase diagram for hydrogen on GaN surfaces[J]. Physical Review Letters, 2002, 88(6): 066103 |
102 | Patera L L, Africh C, Weatherup R S, et al. In situ observations of the atomistic mechanisms of Ni catalyzed low temperature graphene growth[J]. ACS Nano, 2013, 7(9): 7901-7912. |
103 | Yan K, Peng H, Zhou Y, et al. Formation of bilayer bernal graphene: layer-by-layer epitaxy via chemical vapor deposition[J]. Nano Letters, 2011, 11(3): 1106-1110. |
104 | Mandeltort L, Choudhury P, Johnson J K, et al. Reaction of the basal plane of graphite with the methyl radical[J]. The Journal of Physical Chemistry Letters, 2012, 3(12): 1680-1683. |
105 | Song Y, Zhuang J, Song M, et al. Epitaxial nucleation of CVD bilayer graphene on copper[J]. Nanoscale, 2016, 8(48): 20001-20007. |
106 | Yan Z, Lin J, Peng Z, et al. Toward the synthesis of wafer-scale single-crystal graphene on copper foils[J]. ACS Nano, 2012, 6(10): 9110-9117. |
107 | Reina A, Thiele S, Jia X, et al. Growth of large-area single-and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces[J]. Nano Research, 2009, 2(6): 509-516. |
108 | Maruyama S, Kojima R, Miyauchi Y, et al. Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol[J]. Chemical Physics Letters, 2002, 360(3/4): 229-234. |
109 | Sun Y, Yang L, Xia K, et al. “Snowing” graphene using microwave ovens[J]. Advanced Materials, 2018, 30(40): 1803189. |
110 | Wang M, Tang M, Chen S, et al. Graphene-armored aluminum foil with enhanced anticorrosion performance as current collectors for lithium-ion battery[J]. Advanced Materials, 2017, 29(47): 1703882. |
111 | Wang M, Yang H, Wang K, et al. Quantitative analyses of the interfacial properties of current collector at the mesoscopic level in lithium ion battery by using hierarchical graphene[J]. Nano Letters, 2020, 20(3): 2175-2182. |
112 | Park J, Xiong W, Gao Y, et al. Fast growth of graphene patterns by laser direct writing[J]. Applied Physics Letters, 2011, 98(12): 123109. |
113 | Tu R, Liang Y, Zhang C, et al. Fast synthesis of high-quality large-area graphene by laser CVD[J]. Applied Surface Science, 2018, 445: 204-210. |
114 | Luong D X, Bets K V, Algozeeb W A, et al. Gram-scale bottom-up flash graphene synthesis[J]. Nature, 2020, 577(7792): 647-651. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Minghui CHANG, Lin WANG, Jiajia YUAN, Yifei CAO. Study on the cycle performance of salt solution-storage-based heat pump [J]. CIESC Journal, 2023, 74(S1): 329-337. |
[3] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[4] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[5] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[6] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[7] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[8] | Guangyu WANG, Kai ZHANG, Kaihua ZHANG, Dongke ZHANG. Heat and mass transfer and energy consumption for microwave drying of coal slime [J]. CIESC Journal, 2023, 74(6): 2382-2390. |
[9] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
[10] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
[11] | Quanbi ZHANG, Yijin YANG, Xujing GUO. Catalytic degradation of dissolved organic matter in rifampicin pharmaceutical wastewater by Fenton oxidation process [J]. CIESC Journal, 2023, 74(5): 2217-2227. |
[12] | Simin YI, Yali MA, Weiqiang LIU, Jinshuai ZHANG, Yan YUE, Qiang ZHENG, Songyan JIA, Xue LI. Study on ammonia evaporation and hydration kinetics of microcrystalline magnesite [J]. CIESC Journal, 2023, 74(4): 1578-1586. |
[13] | Jin YU, Binbin YU, Xinsheng JIANG. Study on quantification methodology and analysis of chemical effects of combustion control based on fictitious species [J]. CIESC Journal, 2023, 74(3): 1303-1312. |
[14] | Qingyun YANG, Qingsong LI, Zeming CHEN, Jing DENG, Yuying LI, Fan YANG, Guoyuan CHEN, Guoxin LI. Degradation of methylparaben by UV/PMS, UV/PDS and UV/SPC process [J]. CIESC Journal, 2023, 74(3): 1322-1331. |
[15] | Lingxin ZU, Rongting HU, Xin LI, Yudao CHEN, Guanglin CHEN. Carbon release products and denitrification bioavailability from chemical components of woody biomass [J]. CIESC Journal, 2023, 74(3): 1332-1342. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||