CIESC Journal ›› 2020, Vol. 71 ›› Issue (S1): 220-226.DOI: 10.11949/0438-1157.20200113
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Dongmin TIAN1(),Yanpeng WU1(
),Fengjun CHEN2
Received:
2020-02-03
Revised:
2020-02-23
Online:
2020-04-25
Published:
2020-04-25
Contact:
Yanpeng WU
通讯作者:
吴延鹏
作者简介:
田东民(1997—),男,硕士研究生,基金资助:
CLC Number:
Dongmin TIAN, Yanpeng WU, Fengjun CHEN. Analysis of heat transfer performance of copper-water heat pipe based on nano enhanced-PCM[J]. CIESC Journal, 2020, 71(S1): 220-226.
田东民, 吴延鹏, 陈凤君. 基于纳米增强相变材料的铜-水热管传热性能分析[J]. 化工学报, 2020, 71(S1): 220-226.
功率输入/W | 能量/W | ||||
---|---|---|---|---|---|
水 | 纯月桂酸 | 0.5% Al2O3 | 1.0% Al2O3 | 1.5% Al2O3 | |
16 | 4.52 | 3.92 | 4.61 | 4.67 | 4.21 |
20 | 4.62 | 3.99 | 4.82 | 4.91 | 4.58 |
Table 1 Thermal energy storage in PCM with different input powers
功率输入/W | 能量/W | ||||
---|---|---|---|---|---|
水 | 纯月桂酸 | 0.5% Al2O3 | 1.0% Al2O3 | 1.5% Al2O3 | |
16 | 4.52 | 3.92 | 4.61 | 4.67 | 4.21 |
20 | 4.62 | 3.99 | 4.82 | 4.91 | 4.58 |
1 | Wang X F, Sun Z J, Wu C Z, et al. Experimental study on thermosyphon heat sink for cooling of electronic apparatus[J]. Journal of Electron Devices, 2004, 27(3): 393-396. |
2 | Vasiliev L L. The sorption heat pipe—a new device for thermal control and active cooling[J]. Superlattices and Microstructures, 2003, 35(3): 465-477. |
3 | Chen B B, Liu W, Liu Z C, et al. Experimental investigation of loop heat pipe with flat evaporator using biporous wick[J]. Applied Thermal Engineering, 2012, 42(42): 34-40. |
4 | Chang Y W, Cheng C H, Wang J C, et al. Heat pipe for cooling of electronic equipment[J]. Energy Conversion and Management, 2008, 49(11): 3398-3404. |
5 | Vasiliev L L. Micro and miniature heat pipes—electronic component coolers[J]. Applied Thermal Engineering, 2008, 28(4): 266-273. |
6 | Zhou G H, Li J, Lv L. An ultra-thin miniature loop heat pipe cooler for mobile electronics[J]. Applied Thermal Engineering, 2016, 109: 514-523. |
7 | Li J, Wang D, Peterson G P B. A compact loop heat pipe with flat square evaporator for high power chip cooling[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2011, 1(4): 519-527. |
8 | McGlen R J, Jachuck R, Lin S. Integrated thermal management techniques for high power electronic devices[J]. Applied Thermal Engineering, 2004, 24(8/9): 1143-1156. |
9 | Faghri A. Heat Pipe Science and Technology[M]. UK: Taylor and Francis, 1995. |
10 | 孙志坚, 何国安, 王立新, 等. 两种电子器件用重力型热管散热器的换热特性[J]. 化工学报, 2006, 57(10): 2283-2288. |
Sun Z J, He G A, Wang L X, et al. Heat transfer characteristics of two different thermosyphon radiators for electronic device[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(10): 2283-2288. | |
11 | 赵耀华, 王宏燕, 刁彦华, 等. 平板微热管阵列及其传热特性[J]. 化工学报, 2011, 62(2): 336-343. |
Zhao Y H, Wang H Y, Diao Y H, et al. Heat transfer characteristics of flat micro-heat pipe array[J]. CIESC Journal, 2011, 62(2): 336-343. | |
12 | 李永赞, 胡明辅, 李勇. 热管技术的研究进展及其工程应用[J]. 应用能源技术, 2008, (6): 45-48. |
Li Y Z, Hu M F, Li Y. Progress of theoretical research and application investigation on heat pipe technology and its application in engineering [J]. Applied Energy Technology, 2008, (6): 45-48. | |
13 | Weng Y C, Cho H P, Chang C C, et al. Heat pipe with PCM for electronic cooling[J]. Applied Energy, 2011, 88(5): 1825-1833. |
14 | Behi H, Ghanbarpour M, Behi M. Investigation of PCM-assisted heat pipe for electronic cooling[J]. Applied Thermal Engineering, 2017, 127: 1132-1142. |
15 | 李夔宁, 郭宁宁, 王贺. 改善相变材料导热性能研究综述[J]. 制冷学报, 2008, 29(6): 46-50. |
Li K N, Guo N N, Wang H. Review of study on improving conductivity of phase change material[J]. Journal of Refrigeration, 2008, 29(6): 46-50. | |
16 | Lyeo H K, Cahill D G, Lee B S, et al. Thermal conductivity of phase-change material Ge2Sb2Te5[J]. Applied Physics Letters, 2006, 89(15): 151904. |
17 | Zhang Y P, Jiang Y. A simple method, the-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials[J]. Measurement Science and Technology, 1999, 10(3): 201. |
18 | Liu Y D, Zhou Y G, Tong M W, et al. Experimental study of thermal conductivity and phase change performance of nanofluids PCMs[J]. Microfluidics and Nanofluidics, 2009, 7(4): 579. |
19 | Şahan N, Fois M, Paksoy H. Improving thermal conductivity phase change materials—a study of paraffin nanomagnetite composites[J]. Solar Energy Materials and Solar Cells, 2015, 137: 61-67. |
20 | Chaichan M T, Kamel S H, Al-Ajeely A N M. Thermal conductivity enhancement by using nano-material in phase change material for latent heat thermal energy storage systems[J]. Saussurea, 2015, 5(6): 48-55. |
21 | Yin H, Gao X, Ding J, et al. Experimental research on heat transfer mechanism of heat sink with composite phase change materials[J]. Energy Conversion and Management, 2008, 49(6): 1740-1746. |
22 | Arasu A V, Sasmito A P, Mujumdar A S. Numerical performance study of paraffin wax dispersed with alumina in a concentric pipe latent heat storage system[J]. Thermal Science, 2013, 17: 419-430. |
23 | Wang J, Xie H, Guo Z, et al. Improved thermal properties of paraffin wax by the addition of TiO2 nanoparticles[J]. Applied Thermal Engineering, 2014, 73(2): 1541-1547. |
24 | Dhaidan N S, Khodadadi J M, Al-Hattab T A, et al. Experimental and numerical investigation of melting of phase change material/nanoparticle suspensions in a square container subjected to a constant heat flux[J]. International Journal of Heat and Mass Transfer, 2013, 66: 672-683. |
25 | Saha S, Nayak K C, Srinivasan K, et al. Cooling of electronics using phase change materials and thermal conductivity enhancers[C]//18th National & 7th ISHMTASME Heat Mass Transfer Conference. 2006: 4-6. |
26 | Krishna J, Kishore P S, Solomon A B. Heat pipe with nano enhanced-PCM for electronic cooling application[J]. Experimental Thermal and Fluid Science, 2017, 81: 84-92. |
27 | Sonawane S S, Khedkar R S, Wasewar K L, et al. Dispersions of CuO nanoparticles in paraffin prepared by ultrasonication: a potential coolant[J]. International Proceedings of Chemical, Biological & Environmental Engineering, 2012, 46: 48. |
28 | Teng T P, Yu C C. Characteristics of phase-change materials containing oxide nano-additives for thermal storage[J]. Nanoscale Research Letters, 2012, 7(1): 611. |
29 | 钟勋, 俞小莉, 吴俊. 氧化铝有机纳米流体的流动传热基础特性[J]. 化工学报, 2009, 60(1): 35-41. |
Zhong X, Yu X L, Wu J. Fluid flow and heat transfer characteristics of alumina organic nanofluid [J]. CIESC Journal, 2009, 60(1): 35-41. | |
30 | Velraj R, Seeniraj R V. Heat transfer studies during solidification of PCM inside an internally finned tube[J]. Journal of Heat Transfer, 1999, 121(2): 493-497. |
[1] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[2] | Limei SHEN, Boxing HU, Yufei XIE, Weihao ZENG, Xiaoyu ZHANG. Experimental study on heat transfer performance of ultra-thin flat heat pipe [J]. CIESC Journal, 2023, 74(S1): 198-205. |
[3] | Yanpeng WU, Qianlong LIU, Dongmin TIAN, Fengjun CHEN. A review of coupling PCM modules with heat pipes for electronic thermal management [J]. CIESC Journal, 2023, 74(S1): 25-31. |
[4] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[5] | Fangzhe SHI, Yunhua GAN. Numerical simulation of start-up characteristics and heat transfer performance of ultra-thin heat pipe [J]. CIESC Journal, 2023, 74(7): 2814-2823. |
[6] | Kunyang FAN, Jingxing YANG, Haibo XU, Xingrong LIAN, Fengmei HE, Conghui CHEN, Zengyao LI. A unified lattice Boltzmann model for heat transfer in opacifiers-doped silica aerogel [J]. CIESC Journal, 2023, 74(5): 1974-1981. |
[7] | Huizhu YANG, Jingling LAN, Yue YANG, Jialin LIANG, Chuanwen LYU, Yonggang ZHU. Experimental study on thermal performance of high power flat heat pipe [J]. CIESC Journal, 2023, 74(4): 1561-1569. |
[8] | Xuehong WU, Linlin LUAN, Yanan CHEN, Min ZHAO, Cai LYU, Yong LIU. Preparation and thermal properties of degradable flexible phase change films [J]. CIESC Journal, 2023, 74(4): 1818-1826. |
[9] | Jianxun CHEN, Jinping LIU, Xiongwen XU, Yinhao YU. Numerical simulation and performance optimization of a new loop gravity heat pipe [J]. CIESC Journal, 2023, 74(2): 721-734. |
[10] | Jianglong DU, Wenqi YANG, Kai HUANG, Cheng LIAN, Honglai LIU. Heat dissipation performance of the module combined CPCM with air cooling for lithium-ion batteries [J]. CIESC Journal, 2023, 74(2): 674-689. |
[11] | Jinjia WEI, Lei LIU, Xiaoping YANG. Research progress of loop heat pipes for heat dissipation of high-heat-flux electronic devices [J]. CIESC Journal, 2023, 74(1): 60-73. |
[12] | Bin DONG, Yonghao XUE, Kunfeng LIANG, Zhengyin YUAN, Lin WANG, Xun ZHOU. Experimental study on spray heat transfer characteristics of microencapsulated phase change material suspension [J]. CIESC Journal, 2022, 73(7): 2971-2981. |
[13] | Xingda SHI, Huayan CHEN, Yanan GE, Chunrui WU, Hongyou JIA, Xiaolong LYU. Construction of three-dimensional network by modified MWCNT and AlN fillings in PVDF to improve the thermal conductivity [J]. CIESC Journal, 2022, 73(5): 2262-2269. |
[14] | Miao ZHANG, Honghai YANG, Yong YIN, Yue XU, Junjie SHEN, Xincheng LU, Weigang SHI, Jun WANG. Start-up and heat transfer characteristics of a pulsating heat pipe with graphene oxide nanofluids [J]. CIESC Journal, 2022, 73(3): 1136-1146. |
[15] | Jiateng ZHAO, Chenhui WU, Yucheng DAI, Zhonghao RAO. Research progress on heat transfer enhancement and application of oscillating heat pipe [J]. CIESC Journal, 2022, 73(2): 535-565. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||