CIESC Journal ›› 2020, Vol. 71 ›› Issue (S1): 23-30.DOI: 10.11949/0438-1157.20191131
• Thermodynamics • Previous Articles Next Articles
Chen WANG1(),Xiaohui SHE2,Xiaosong ZHANG1()
Received:
2019-10-07
Revised:
2019-11-08
Online:
2020-04-25
Published:
2020-04-25
Contact:
Xiaosong ZHANG
通讯作者:
张小松
作者简介:
王晨(1995—),男,博士研究生,基金资助:
CLC Number:
Chen WANG, Xiaohui SHE, Xiaosong ZHANG. Thermodynamic study of liquid air energy storage with air purification unit[J]. CIESC Journal, 2020, 71(S1): 23-30.
王晨, 折晓会, 张小松. 含空气净化过程的液态空气储能热力学研究[J]. 化工学报, 2020, 71(S1): 23-30.
Add to citation manager EndNote|Ris|BibTeX
参数 | 数值 |
---|---|
加压压力P c | 9×106 Pa |
热油初始温度T 17 | 293 K |
丙烷初始温度T 34 | 214 K |
甲醇初始温度T 36 | 293 K |
液态空气温度T 13 | 78.54 K |
液态空气压力P 13 | 1×105 Pa |
释能压力P d | 1.2×107 Pa |
透平进口温度P 41 | 458.5 K |
透平出口最终压力P 46 | 1×105 Pa |
吸附温度 | 298 K |
吸附压力 | 5.8×105 Pa |
脱附压力 | 1×105 Pa |
热吹温度P 47 | 443 K |
冷吹温度P 47 ’ | 296 K |
压缩机等熵效率 | 0.89 |
透平等熵效率 | 0.9 |
制冷膨胀机等熵效率 | 0.8 |
低温泵效率 | 0.7 |
Table 1 Simulation parameters of proposed LAES system
参数 | 数值 |
---|---|
加压压力P c | 9×106 Pa |
热油初始温度T 17 | 293 K |
丙烷初始温度T 34 | 214 K |
甲醇初始温度T 36 | 293 K |
液态空气温度T 13 | 78.54 K |
液态空气压力P 13 | 1×105 Pa |
释能压力P d | 1.2×107 Pa |
透平进口温度P 41 | 458.5 K |
透平出口最终压力P 46 | 1×105 Pa |
吸附温度 | 298 K |
吸附压力 | 5.8×105 Pa |
脱附压力 | 1×105 Pa |
热吹温度P 47 | 443 K |
冷吹温度P 47 ’ | 296 K |
压缩机等熵效率 | 0.89 |
透平等熵效率 | 0.9 |
制冷膨胀机等熵效率 | 0.8 |
低温泵效率 | 0.7 |
工况点 | 流量/(kg/s) | 温度/K | 压力×10-5 /Pa | 介质 |
---|---|---|---|---|
1 | 129.74 | 293.00 | 1.00 | 空气 |
2 | 200.00 | 506.79 | 5.80 | 空气 |
3 | 200.00 | 309.00 | 5.80 | 空气 |
4 | 200.00 | 298.00 | 5.80 | 空气 |
5 | 199.84 | 298.00 | 5.80 | 空气 |
6 | 199.84 | 446.19 | 20.85 | 空气 |
7 | 199.84 | 309.00 | 20.85 | 空气 |
8 | 199.84 | 490.20 | 90.00 | 空气 |
9 | 199.84 | 309.00 | 90.00 | 空气 |
10 | 199.84 | 221.38 | 90.00 | 空气 |
11 | 199.84 | 123.80 | 90.00 | 空气 |
12 | 199.84 | 78.74 | 1.00 | 空气 |
13 | 129.74 | 78.54 | 1.00 | 空气 |
14 | 70.10 | 79.24 | 1.00 | 空气 |
15 | 70.10 | 216.90 | 1.00 | 空气 |
16 | 70.10 | 293.00 | 1.00 | 空气 |
17 | 380.00 | 293.00 | 1.00 | 储热油 |
18 | 129.20 | 293.00 | 1.00 | 储热油 |
19 | 129.20 | 479.90 | 1.00 | 储热油 |
20 | 125.40 | 293.00 | 1.00 | 储热油 |
21 | 125.40 | 434.47 | 1.00 | 储热油 |
22 | 125.40 | 293.00 | 1.00 | 储热油 |
23 | 125.40 | 481.61 | 1.00 | 储热油 |
24 | 380.00 | 465.85 | 1.00 | 储热油 |
25 | 243.20 | 465.85 | 1.00 | 储热油 |
26 | 86.82 | 465.85 | 1.00 | 储热油 |
27 | 86.82 | 293.87 | 1.00 | 储热油 |
28 | 79.04 | 465.85 | 1.00 | 储热油 |
29 | 79.04 | 309.63 | 1.00 | 储热油 |
30 | 77.34 | 465.85 | 1.00 | 储热油 |
31 | 77.34 | 312.04 | 1.00 | 储热油 |
32 | 243.20 | 304.86 | 1.00 | 储热油 |
33 | 120.00 | 87.20 | 1.00 | 丙烷 |
34 | 120.00 | 214.00 | 1.00 | 丙烷 |
35 | 55.00 | 215.00 | 1.00 | 甲醇 |
36 | 55.00 | 293.00 | 1.00 | 甲醇 |
37 | 129.74 | 78.74 | 1.00 | 空气 |
38 | 129.74 | 86.11 | 120.00 | 空气 |
39 | 129.74 | 206.86 | 120.00 | 空气 |
40 | 129.74 | 290.42 | 120.00 | 空气 |
41 | 129.74 | 458.50 | 120.00 | 空气 |
42 | 129.74 | 304.51 | 24.33 | 空气 |
43 | 129.74 | 458.50 | 24.33 | 空气 |
44 | 129.74 | 306.77 | 4.93 | 空气 |
45 | 129.74 | 458.50 | 4.93 | 空气 |
46 | 129.74 | 307.53 | 1.00 | 空气 |
Table 2 Working fluid parameters in LAES system
工况点 | 流量/(kg/s) | 温度/K | 压力×10-5 /Pa | 介质 |
---|---|---|---|---|
1 | 129.74 | 293.00 | 1.00 | 空气 |
2 | 200.00 | 506.79 | 5.80 | 空气 |
3 | 200.00 | 309.00 | 5.80 | 空气 |
4 | 200.00 | 298.00 | 5.80 | 空气 |
5 | 199.84 | 298.00 | 5.80 | 空气 |
6 | 199.84 | 446.19 | 20.85 | 空气 |
7 | 199.84 | 309.00 | 20.85 | 空气 |
8 | 199.84 | 490.20 | 90.00 | 空气 |
9 | 199.84 | 309.00 | 90.00 | 空气 |
10 | 199.84 | 221.38 | 90.00 | 空气 |
11 | 199.84 | 123.80 | 90.00 | 空气 |
12 | 199.84 | 78.74 | 1.00 | 空气 |
13 | 129.74 | 78.54 | 1.00 | 空气 |
14 | 70.10 | 79.24 | 1.00 | 空气 |
15 | 70.10 | 216.90 | 1.00 | 空气 |
16 | 70.10 | 293.00 | 1.00 | 空气 |
17 | 380.00 | 293.00 | 1.00 | 储热油 |
18 | 129.20 | 293.00 | 1.00 | 储热油 |
19 | 129.20 | 479.90 | 1.00 | 储热油 |
20 | 125.40 | 293.00 | 1.00 | 储热油 |
21 | 125.40 | 434.47 | 1.00 | 储热油 |
22 | 125.40 | 293.00 | 1.00 | 储热油 |
23 | 125.40 | 481.61 | 1.00 | 储热油 |
24 | 380.00 | 465.85 | 1.00 | 储热油 |
25 | 243.20 | 465.85 | 1.00 | 储热油 |
26 | 86.82 | 465.85 | 1.00 | 储热油 |
27 | 86.82 | 293.87 | 1.00 | 储热油 |
28 | 79.04 | 465.85 | 1.00 | 储热油 |
29 | 79.04 | 309.63 | 1.00 | 储热油 |
30 | 77.34 | 465.85 | 1.00 | 储热油 |
31 | 77.34 | 312.04 | 1.00 | 储热油 |
32 | 243.20 | 304.86 | 1.00 | 储热油 |
33 | 120.00 | 87.20 | 1.00 | 丙烷 |
34 | 120.00 | 214.00 | 1.00 | 丙烷 |
35 | 55.00 | 215.00 | 1.00 | 甲醇 |
36 | 55.00 | 293.00 | 1.00 | 甲醇 |
37 | 129.74 | 78.74 | 1.00 | 空气 |
38 | 129.74 | 86.11 | 120.00 | 空气 |
39 | 129.74 | 206.86 | 120.00 | 空气 |
40 | 129.74 | 290.42 | 120.00 | 空气 |
41 | 129.74 | 458.50 | 120.00 | 空气 |
42 | 129.74 | 304.51 | 24.33 | 空气 |
43 | 129.74 | 458.50 | 24.33 | 空气 |
44 | 129.74 | 306.77 | 4.93 | 空气 |
45 | 129.74 | 458.50 | 4.93 | 空气 |
46 | 129.74 | 307.53 | 1.00 | 空气 |
参数 | 数值 |
---|---|
压缩机耗功 | 109243.864 kW |
制冷膨胀机输出功率 | 4311.376 kW |
空气液化过程效率 | 0.814 |
低温泵耗功 | 2527.568 kW |
空气透平输出功率 | 59068.701 kW |
液态空气释能过程效率 | 0.873 |
液体收率 | 0.65 |
基线系统储电效率 | 0.539 |
Table 3 Summary of simulation results
参数 | 数值 |
---|---|
压缩机耗功 | 109243.864 kW |
制冷膨胀机输出功率 | 4311.376 kW |
空气液化过程效率 | 0.814 |
低温泵耗功 | 2527.568 kW |
空气透平输出功率 | 59068.701 kW |
液态空气释能过程效率 | 0.873 |
液体收率 | 0.65 |
基线系统储电效率 | 0.539 |
1 | Janet L , Sawin J , Freyr S . Renewables 2018 global status report [EB/OL]. [2018-12-01]. http: //www.ren21.net/gsr-2018/chapters/chapter_01/chapter_01/. |
2 | Chen H , Cong T N , Yang W , et al . Progress in electrical energy storage system: a critical review [J]. Progress in Natural Science, 2009, 19(3): 291-312. |
3 | 周原冰 . 全球能源互联网及关键技术[EB/OL]. [2019-04-22]. http: //kns.cnki.net/kcms/detail/ 11.1784.N.20190420.143.002.html. |
Zhou Y B . Global energy internet and key technologies [EB/OL]. [2019-04-22]. http: //kns.cnki.net/kcms/detail/ 11.1784.N.20190420.1439.002.html. | |
4 | Rodrigues E M G , Godina R , Santos S F , et al . Energy storage systems supporting increased penetration of renewables in islanded systems [J]. Energy, 2014, 75: 265-280. |
5 | Denholm P , Hand M . Grid flexibility and storage required to achieve very high penetration of variable renewable electricity [J]. Energy Policy, 2011, 39(3): 1817-1830. |
6 | Li Y , Chen H , Zhang X , et al . Renewable energy carriers: hydrogen or liquid air/nitrogen? [J]. Applied Thermal Engineering, 2010, 30(14/15): 1985-1990. |
7 | Antonelli M , Desideri U , Giglioli R , et al . Liquid air energy storage: a potential low emissions and efficient storage system [J]. Energy Procedia, 2016, 88: 693-697. |
8 | Antonelli M , Barsali S , Desideri U , et al . Liquid air energy storage: potential and challenges of hybrid power plants [J]. Applied Energy, 2017, 194: 522-529. |
9 | Smith E M . Storage of electrical energy using supercritical liquid air [J]. Proceedings of the Institution of Mechanical Engineers, 2006, 191(1): 289-298. |
10 | Peng H , Shan X , Yang Y , et al . A study on performance of a liquid air energy storage system with packed bed units [J]. Applied Energy, 2018, 211: 126-135. |
11 | Al-Zareer M , Dincer I , Rosen M A . Analysis and assessment of novel liquid air energy storage system with district heating and cooling capabilities [J]. Energy, 2017, 141: 792-802. |
12 | Sciacovelli A , Vecchi A , Ding Y . Liquid air energy storage (LAES) with packed bed cold thermal storage — from component to system level performance through dynamic modelling [J]. Applied Energy, 2017, 190: 84-98. |
13 | She X , Peng X , Nie B , et al . Enhancement of round trip efficiency of liquid air energy storage through effective utilization of heat of compression [J]. Applied Energy, 2017, 206: 1632-1642. |
14 | Peng X , She X , Cong L , et al . Thermodynamic study on the effect of cold and heat recovery on performance of liquid air energy storage [J]. Applied Energy, 2018, 221: 86-99. |
15 | Li Y , Jin Y , Chen H , et al . An integrated system for thermal power generation, electrical energy storage and CO2 capture [J]. International Journal of Energy Research, 2011, 35(13): 1158-1167. |
16 | Aneke M , Wang M . Process analysis of pressurized oxy-coal power cycle for carbon capture application integrated with liquid air power generation and binary cycle engines [J]. Applied Energy, 2015, 154: 556-566. |
17 | Zhang T , Zhang X , Xue X , et al . Thermodynamic analysis of a hybrid power system combining Kalina cycle with liquid air energy storage [J]. Entropy, 2019, 21(3): 220. |
18 | Xie Y , Xue X . Thermodynamic analysis on an integrated liquefied air energy storage and electricity generation system [J]. Energies, 2018, 11(10): 2540. |
19 | Ameel B , joen C T , De K K , et al . Thermodynamic analysis of energy storage with a liquid air Rankine cycle [J]. Applied Thermal Engineering, 2013, 52(1): 130-140. |
20 | Tafone A , Romagnoli A , Li Y , et al . Techno-economic analysis of a liquid air energy storage (LAES) for cooling application in hot climates [J]. Energy Procedia, 2017, 105: 4450-4457. |
21 | Zhang T , Chen L , Zhang X , et al . Thermodynamic analysis of a novel hybrid liquid air energy storage system based on the utilization of LNG cold energy [J]. Energy, 2018, 155: 641-650. |
22 | Serbezov A . Adsorption equilibrium of water vapor on F-200 activated alumina [J]. J. Chem. Eng. Data, 2003, 48: 421-425. |
23 | Wang L , Liu Z , Li P , et al . Experimental and modeling investigation on post-combustion carbon dioxide capture using zeolite 13X-APG by hybrid VTSA process [J]. Chemical Engineering Journal, 2012, 197: 151-161. |
24 | Oh H T , Lim S J , Kim J H , et al . Adsorption equilibria of water vapor on an alumina/zeolite 13X composite and silica gel [J]. Journal of Chemical & Engineering Data, 2017, 62(2): 804-811. |
25 | 孔祥明, 杨颖, 沈文龙, 等 . CO2/CH4/N2在沸石13X-APG上的吸附平衡 [J]. 化工学报, 2013, 64(6): 2117-2124. |
Kong X M , Yang Y , Shen W L , et al . Adsorption equilibrium of CO2, CH4 and N2 on zeolite 13X-APG [J]. CIESC Journal, 2013, 64(6): 2117-2124. | |
26 | Rege S U , Yang R T , Buzanowski M A . Sorbents for air prepurification in air separation [J]. Chemical Engineering Science, 2000, 55: 4827-4838. |
27 | Ko D , Kim M , Moona I , et al . Analysis of purge gas temperature in cyclic TSA process [J]. Chemical Engineering Science, 2002, 57: 179-195. |
28 | Kumar R , Koss V , Perelman N , et al . Thermal swing adsorption process to minimize the thermal pulse during the feed step [J]. Separation Science and Technology, 2000, 35(14): 2279-2297. |
29 | Tian Q , He G , Wang Z , et al . A novel radial adsorber with parallel layered beds for prepurification of large-scale air separation units [J]. Industrial & Engineering Chemistry Research, 2015, 54(30): 7502-7515. |
30 | Zhang P , Wang L . Numerical analysis on the performance of the three-bed temperature swing adsorption process for air prepurification [J]. Industrial & Engineering Chemistry Research, 2012, 52(2): 885-898. |
31 | Xu J F , Peng Q , Fu J L . Exergy analysis on thermodynamic system of power plant [J]. Energy Engineering, 2001, 5: 21-24. |
32 | 朱永强, 尹忠东 . 基于能量利用效率和耗能比的节能效果评估体系[J]. 电工电能新技术, 2007, 26: 33-36. |
Zhu Y Q , Yin Z D . New evaluation system for energy savings based on efficiency and loss ratio [J]. Advanced Technology of Electrical Engineering and Energy, 2007, 26: 33-36. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Minghui CHANG, Lin WANG, Jiajia YUAN, Yifei CAO. Study on the cycle performance of salt solution-storage-based heat pump [J]. CIESC Journal, 2023, 74(S1): 329-337. |
[3] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[4] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[5] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[6] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[7] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[8] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[9] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[10] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
[11] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[12] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
[13] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[14] | Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548. |
[15] | Xuanjun WU, Chao WANG, Zijian CAO, Weiquan CAI. Deep learning model of fixed bed adsorption breakthrough curve hybrid-driven by data and physical information [J]. CIESC Journal, 2023, 74(3): 1145-1160. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||