CIESC Journal ›› 2020, Vol. 71 ›› Issue (S1): 38-45.DOI: 10.11949/0438-1157.20190694
• Thermodynamics • Previous Articles Next Articles
Jiannian HAN(),Gang WANG(),Mei YANG,Meijia LIU,Chengdi GAO,Jinsen GAO
Received:
2019-06-20
Revised:
2019-09-16
Online:
2020-04-25
Published:
2020-04-25
Contact:
Gang WANG
通讯作者:
王刚
作者简介:
韩建年(1992—),男,硕士研究生,基金资助:
CLC Number:
Jiannian HAN, Gang WANG, Mei YANG, Meijia LIU, Chengdi GAO, Jinsen GAO. Thermodynamic study on fluid catalytic cracking of Fischer-Tropsch wax to produce clean gasoline[J]. CIESC Journal, 2020, 71(S1): 38-45.
韩建年, 王刚, 杨梅, 刘美佳, 高成地, 高金森. 费托蜡催化裂化反应生产清洁汽油的热力学分析[J]. 化工学报, 2020, 71(S1): 38-45.
Add to citation manager EndNote|Ris|BibTeX
柴油馏分 | 质量分数/% | 汽油馏分 | 质量分数/% | 气体组分 | 质量分数/% |
---|---|---|---|---|---|
链烷烃 | 57.70 | 正构烷烃 | 6.27 | 碳一 | 0.49 |
总环烷烃 | 6.20 | 异构烷烃 | 41.94 | 碳二 | 2.72 |
单环芳烃 | 17.70 | 烯烃 | 36.59 | 碳三 | 39.19 |
双环芳烃 | 17.00 | 环烷烃 | 1.36 | 碳四 | 52.18 |
三环芳烃 | 1.40 | 芳烃 | 13.84 | 碳五 | 5.42 |
总计 | 100.00 | 总计 | 100.00 | 总计 | 100.00 |
Table 1 Analysis of products of n-triacontane cracking reaction
柴油馏分 | 质量分数/% | 汽油馏分 | 质量分数/% | 气体组分 | 质量分数/% |
---|---|---|---|---|---|
链烷烃 | 57.70 | 正构烷烃 | 6.27 | 碳一 | 0.49 |
总环烷烃 | 6.20 | 异构烷烃 | 41.94 | 碳二 | 2.72 |
单环芳烃 | 17.70 | 烯烃 | 36.59 | 碳三 | 39.19 |
双环芳烃 | 17.00 | 环烷烃 | 1.36 | 碳四 | 52.18 |
三环芳烃 | 1.40 | 芳烃 | 13.84 | 碳五 | 5.42 |
总计 | 100.00 | 总计 | 100.00 | 总计 | 100.00 |
Substance | ||||||
---|---|---|---|---|---|---|
a1 | b1×103 | c1×106 | a2 | b2×103 | c2×107 | |
propane | -80.700 | -90.500 | 42.104 | -105.600 | 264.747 | 325.001 |
hexane | -129.110 | -150.135 | 73.459 | -170.450 | 554.166 | 503.033 |
octane | -160.340 | -190.251 | 94.492 | -212.690 | 747.742 | 623.610 |
nonane | -175.880 | -210.359 | 105.006 | -233.830 | 844.766 | 684.506 |
undecane | -207.110 | -250.454 | 125.997 | -276.110 | 1038.900 | 804.055 |
tricosane | -394.060 | -491.726 | 252.484 | -529.520 | 2202.780 | 1526.540 |
hentriacontane | -518.730 | -625.480 | 336.728 | -698.460 | 2978.630 | 2008.990 |
2-methylpentane | -137.110 | -147.072 | 72.785 | -177.680 | 563.031 | 483.129 |
2-methyloctane | -184.630 | -204.075 | 101.981 | -240.800 | 854.744 | 662.894 |
cyclohexane | -818.200 | -167.055 | 928.304 | -127.920 | 520.324 | 447.064 |
propylcyclohexane | -141.000 | -211.840 | 118.098 | -199.500 | 808.737 | 561.762 |
cyclohexylhexane | -187.020 | -272.040 | 149.591 | -262.180 | 1100.050 | 740.705 |
propene | 37.330 | -65.191 | 28.085 | 19.410 | 136.848 | 257.471 |
1-hexene | -9.810 | -125.047 | 59.735 | -44.220 | 427.345 | 433.515 |
1-nonene | -56.530 | -185.489 | 914.790 | -107.580 | 718.380 | 614.413 |
1-undecene | -87.790 | -225.438 | 112.353 | -149.840 | 912.363 | 735.384 |
1-dodecene | -103.270 | -245.814 | 123.039 | -170.910 | 1009.320 | 796.543 |
1-tricosene | -274.670 | -466.945 | 238.969 | -403.310 | 2076.680 | 1458.700 |
1-octacosene | -352.560 | -567.497 | 291.679 | -508.920 | 2561.790 | 1760.070 |
benzene | 101.400 | -72.136 | 32.878 | 81.510 | 152.823 | 265.222 |
propylbenzene | 40.970 | -130.675 | 63.463 | 4.890 | 429.374 | 440.117 |
hexylbenzene | -6.770 | -191.050 | 95.123 | -59.460 | 719.974 | 621.722 |
1-ethylnaphthalene | 127.100 | -120.985 | 61.103 | 93.650 | 431.031 | 383.179 |
Table 2 Enthalpy changes and Gibbs free energy of FCC products of n-triacontane as equation of temperatures
Substance | ||||||
---|---|---|---|---|---|---|
a1 | b1×103 | c1×106 | a2 | b2×103 | c2×107 | |
propane | -80.700 | -90.500 | 42.104 | -105.600 | 264.747 | 325.001 |
hexane | -129.110 | -150.135 | 73.459 | -170.450 | 554.166 | 503.033 |
octane | -160.340 | -190.251 | 94.492 | -212.690 | 747.742 | 623.610 |
nonane | -175.880 | -210.359 | 105.006 | -233.830 | 844.766 | 684.506 |
undecane | -207.110 | -250.454 | 125.997 | -276.110 | 1038.900 | 804.055 |
tricosane | -394.060 | -491.726 | 252.484 | -529.520 | 2202.780 | 1526.540 |
hentriacontane | -518.730 | -625.480 | 336.728 | -698.460 | 2978.630 | 2008.990 |
2-methylpentane | -137.110 | -147.072 | 72.785 | -177.680 | 563.031 | 483.129 |
2-methyloctane | -184.630 | -204.075 | 101.981 | -240.800 | 854.744 | 662.894 |
cyclohexane | -818.200 | -167.055 | 928.304 | -127.920 | 520.324 | 447.064 |
propylcyclohexane | -141.000 | -211.840 | 118.098 | -199.500 | 808.737 | 561.762 |
cyclohexylhexane | -187.020 | -272.040 | 149.591 | -262.180 | 1100.050 | 740.705 |
propene | 37.330 | -65.191 | 28.085 | 19.410 | 136.848 | 257.471 |
1-hexene | -9.810 | -125.047 | 59.735 | -44.220 | 427.345 | 433.515 |
1-nonene | -56.530 | -185.489 | 914.790 | -107.580 | 718.380 | 614.413 |
1-undecene | -87.790 | -225.438 | 112.353 | -149.840 | 912.363 | 735.384 |
1-dodecene | -103.270 | -245.814 | 123.039 | -170.910 | 1009.320 | 796.543 |
1-tricosene | -274.670 | -466.945 | 238.969 | -403.310 | 2076.680 | 1458.700 |
1-octacosene | -352.560 | -567.497 | 291.679 | -508.920 | 2561.790 | 1760.070 |
benzene | 101.400 | -72.136 | 32.878 | 81.510 | 152.823 | 265.222 |
propylbenzene | 40.970 | -130.675 | 63.463 | 4.890 | 429.374 | 440.117 |
hexylbenzene | -6.770 | -191.050 | 95.123 | -59.460 | 719.974 | 621.722 |
1-ethylnaphthalene | 127.100 | -120.985 | 61.103 | 93.650 | 431.031 | 383.179 |
Reaction | |||||
---|---|---|---|---|---|
350℃ | 400℃ | 450℃ | 500℃ | 550℃ | |
80.92 | 80.45 | 79.97 | 79.47 | 78.96 | |
79.54 | 79.09 | 78.63 | 78.15 | 77.65 | |
79.54 | 79.09 | 78.62 | 78.14 | 77.64 | |
79.51 | 79.06 | 78.59 | 78.10 | 77.60 | |
79.69 | 79.22 | 78.73 | 78.23 | 77.71 | |
79.32 | 78.83 | 78.35 | 77.86 | 77.36 | |
78.92 | 78.45 | 77.96 | 77.45 | 76.93 | |
84.04 | 83.23 | 82.44 | 81.66 | 80.89 | |
80.68 | 80.21 | 79.72 | 79.21 | 78.68 | |
93.56 | 93.09 | 92.61 | 92.12 | 91.61 |
Table 3 Enthalpy changes of cracking of F-T wax at different temperatures
Reaction | |||||
---|---|---|---|---|---|
350℃ | 400℃ | 450℃ | 500℃ | 550℃ | |
80.92 | 80.45 | 79.97 | 79.47 | 78.96 | |
79.54 | 79.09 | 78.63 | 78.15 | 77.65 | |
79.54 | 79.09 | 78.62 | 78.14 | 77.64 | |
79.51 | 79.06 | 78.59 | 78.10 | 77.60 | |
79.69 | 79.22 | 78.73 | 78.23 | 77.71 | |
79.32 | 78.83 | 78.35 | 77.86 | 77.36 | |
78.92 | 78.45 | 77.96 | 77.45 | 76.93 | |
84.04 | 83.23 | 82.44 | 81.66 | 80.89 | |
80.68 | 80.21 | 79.72 | 79.21 | 78.68 | |
93.56 | 93.09 | 92.61 | 92.12 | 91.61 |
Reaction | |||||
---|---|---|---|---|---|
350℃ | 400℃ | 450℃ | 500℃ | 550℃ | |
4.51 | 14.39 | 38.88 | 91.68 | 193.87 | |
7.94 | 24.80 | 65.88 | 153.10 | 319.66 | |
8.65 | 27.04 | 71.76 | 166.91 | 348.49 | |
8.25 | 25.76 | 68.29 | 158.64 | 330.87 | |
7.38 | 23.10 | 61.37 | 142.81 | 298.30 | |
8.29 | 25.82 | 68.32 | 158.41 | 329.75 | |
8.55 | 26.45 | 69.56 | 160.44 | 332.42 | |
0.91 | 3.03 | 8.46 | 20.49 | 44.11 | |
5.80 | 18.40 | 49.49 | 116.41 | 245.42 | |
0.09 | 0.33 | 1.06 | 2.85 | 6.79 |
Table 4 Equilibrium constants of cracking of F-T wax at different temperatures
Reaction | |||||
---|---|---|---|---|---|
350℃ | 400℃ | 450℃ | 500℃ | 550℃ | |
4.51 | 14.39 | 38.88 | 91.68 | 193.87 | |
7.94 | 24.80 | 65.88 | 153.10 | 319.66 | |
8.65 | 27.04 | 71.76 | 166.91 | 348.49 | |
8.25 | 25.76 | 68.29 | 158.64 | 330.87 | |
7.38 | 23.10 | 61.37 | 142.81 | 298.30 | |
8.29 | 25.82 | 68.32 | 158.41 | 329.75 | |
8.55 | 26.45 | 69.56 | 160.44 | 332.42 | |
0.91 | 3.03 | 8.46 | 20.49 | 44.11 | |
5.80 | 18.40 | 49.49 | 116.41 | 245.42 | |
0.09 | 0.33 | 1.06 | 2.85 | 6.79 |
Reaction | |||||
---|---|---|---|---|---|
350℃ | 400℃ | 450℃ | 500℃ | 550℃ | |
79.32 | 78.83 | 78.35 | 77.86 | 77.36 | |
-6.35 | -6.24 | -6.14 | -6.03 | -5.94 | |
-135.96 | -136.21 | -136.40 | -136.53 | -136.59 | |
-50.62 | -50.92 | -51.32 | -51.82 | -52.42 |
Table 5 Enthalpy changes of producing to C6i-paraffins at different temperatures
Reaction | |||||
---|---|---|---|---|---|
350℃ | 400℃ | 450℃ | 500℃ | 550℃ | |
79.32 | 78.83 | 78.35 | 77.86 | 77.36 | |
-6.35 | -6.24 | -6.14 | -6.03 | -5.94 | |
-135.96 | -136.21 | -136.40 | -136.53 | -136.59 | |
-50.62 | -50.92 | -51.32 | -51.82 | -52.42 |
Reaction | |||||
---|---|---|---|---|---|
350℃ | 400℃ | 450℃ | 500℃ | 550℃ | |
8.29 | 25.82 | 68.32 | 158.41 | 329.75 | |
1.61 | 1.47 | 1.36 | 1.28 | 1.21 | |
8674.19 | 1242.48 | 231.88 | 53.56 | 14.73 | |
66.52 | 31.89 | 16.88 | 9.67 | 5.91 |
Table 6 Equilibrium constants of producing to C6i-paraffins at different temperatures
Reaction | |||||
---|---|---|---|---|---|
350℃ | 400℃ | 450℃ | 500℃ | 550℃ | |
8.29 | 25.82 | 68.32 | 158.41 | 329.75 | |
1.61 | 1.47 | 1.36 | 1.28 | 1.21 | |
8674.19 | 1242.48 | 231.88 | 53.56 | 14.73 | |
66.52 | 31.89 | 16.88 | 9.67 | 5.91 |
Reaction | |||||
---|---|---|---|---|---|
350℃ | 400℃ | 450℃ | 500℃ | 550℃ | |
-90.55 | -90.15 | -89.61 | -88.93 | -88.12 | |
39.04 | 39.82 | 40.66 | 41.56 | 42.53 | |
45.05 | 45.71 | 46.44 | 47.26 | 48.16 | |
211.33 | 211.85 | 212.09 | 212.06 | 211.76 | |
80.68 | 80.21 | 79.72 | 79.21 | 78.68 | |
164.32 | 165.62 | 166.74 | 167.70 | 168.49 |
Table 7 Enthalpy changes of cyclization and aromatization at different temperatures
Reaction | |||||
---|---|---|---|---|---|
350℃ | 400℃ | 450℃ | 500℃ | 550℃ | |
-90.55 | -90.15 | -89.61 | -88.93 | -88.12 | |
39.04 | 39.82 | 40.66 | 41.56 | 42.53 | |
45.05 | 45.71 | 46.44 | 47.26 | 48.16 | |
211.33 | 211.85 | 212.09 | 212.06 | 211.76 | |
80.68 | 80.21 | 79.72 | 79.21 | 78.68 | |
164.32 | 165.62 | 166.74 | 167.70 | 168.49 |
Reaction | |||||
---|---|---|---|---|---|
350℃ | 400℃ | 450℃ | 500℃ | 550℃ | |
1434.79 | 396.46 | 131.45 | 50.48 | 21.86 | |
0.25 | 0.45 | 0.73 | 1.14 | 1.70 | |
0.19 | 0.36 | 0.63 | 1.05 | 1.65 | |
1.20×103 | 2.42×104 | 3.25×105 | 3.15×106 | 2.34×107 | |
5.80 | 18.40 | 49.49 | 116.41 | 245.42 | |
1.08×103 | 1.12×104 | 8.55×104 | 5.13×105 | 2.52×106 |
Table 8 Equilibrium constants of cyclization and aromatization at different temperatures
Reaction | |||||
---|---|---|---|---|---|
350℃ | 400℃ | 450℃ | 500℃ | 550℃ | |
1434.79 | 396.46 | 131.45 | 50.48 | 21.86 | |
0.25 | 0.45 | 0.73 | 1.14 | 1.70 | |
0.19 | 0.36 | 0.63 | 1.05 | 1.65 | |
1.20×103 | 2.42×104 | 3.25×105 | 3.15×106 | 2.34×107 | |
5.80 | 18.40 | 49.49 | 116.41 | 245.42 | |
1.08×103 | 1.12×104 | 8.55×104 | 5.13×105 | 2.52×106 |
1 | Amsel S, Maniatis A, Tavassoli M, et al. Stage and development possibilities of the Fischer-Tropsch-synthesis for the production of primary chemicals and feedstocks[J]. Food Chemistry, 1977, 190(11): 607-613. |
2 | Jager B. Developments in Fischer-Tropsch technology[M]//Studies in Surface Science and Catalysis.de Pontes M, Espinoza R L, Nicolaides C P,et al. Amsterdam: Elsevier, 1997: 107, 219-224. |
3 | 孙予罕, 陈建刚, 王俊刚, 等. 费托合成钴基催化剂的研究进展[J]. 催化学报, 2010, 31(8): 919-927. |
Sun Y H, Chen J G, Wang J G, et al. The development of cobalt-based catalysts for Fischer-Tropsch synthesis[J]. Chinese Journal of Catalysis, 2010, 31(8): 919-927. | |
4 | Steynberg A P, Espinoza R L, Jager B, et al. High temperature Fischer-Tropsch synthesis in commercial practice[J]. Applied Catalysis A, General, 1999, 186(1) : 41-54. |
5 | Pendyala V R R, Jacobs G, Mohandas J C, et al. Fischer-Tropsch synthesis: effect of water over iron-based catalysts[J]. Catalysis Letters, 2010, 140(3/4): 98-105. |
6 | 王林, 孔繁华, 刘晓彤, 等. 费托合成产物的加工利用技术探讨[J]. 炼油与化工, 2015, 26(5): 36-39. |
Wang L, Kong F H, Liu X T, et al. Processing and utilization of products from Fischer-Tropsch synthesis[J]. Refining and Chemical Industry, 2015, 26(5): 36-39. | |
7 | Miller S J, Shah N, Huffman G P. Conversion of waste plastic to lubricating base oil[J]. Energy & Fuels, 2005, 19(4): 1580-1586. |
8 | Kobayashi M, Saitoh M, Togawa S, et al. Branching structure of diesel and lubricant base oils prepared by isomerization/hydrocracking of fischer-tropsch waxes and α-olefins[J]. Energy & Fuels, 2009, 23(1): 513-518. |
9 | Leckel D, Liwanga-Ehumbu M. Diesel-selective hydrocracking of an iron-based Fischer-Tropsch wax fraction (C15-C45) using a MoO3-modified noble metal catalyst[J]. Energy & Fuels, 2006, 20(6): 2330-2336. |
10 | Hanaoka T, Miyazawa T, Shimura K, et al. Jet fuel synthesis from Fischer-Tropsch product under mild hydrocracking conditions using Pt-loaded catalysts[J]. Chemical Engineering Journal, 2015, 263(3): 178-185. |
11 | Gamba S, Pellegrini L A, Calemma V, et al. Liquid fuels from Fischer-Tropsch wax hydrocracking: isomer distribution[J]. Catalysis Today, 2010, 156(1/2): 58-64. |
12 | Mhike W, Focke W W, Mofokeng J P, et al. Thermally conductive phase-change materials for energy storage based on low-density polyethylene, soft Fischer-Tropsch wax and graphite[J]. Thermochimica Acta, 2012, 527(1/2): 75-82. |
13 | Molefi J A, Luyt A S, Krupa I. Comparison of LDPE, LLDPE and HDPE as matrices for phase change materials based on a soft Fischer-Tropsch paraffin wax[J]. Thermochimica Acta, 2010, 500(1/2): 88-92. |
14 | Luyt A S, Krupa I. Phase change materials formed by UV curable epoxy matrix and Fischer-Tropsch paraffin wax[J]. Energy Conversion and Management, 2009, 50(1): 57-61. |
15 | 闫朋辉, 王宁波, 李大鹏, 等. Y分子筛处理方式对催化剂及费托蜡加氢裂化性能的影响[J]. 工业催化, 2014, 22(6): 422-427. |
Yan P H, Wang N B, Li D P, et al. Effect of treatment methods of Y zeolite on catalysts and their hydrocracking performance for Fischer-Tropsch wax[J]. Industrial Catalysis, 2014, 22(6): 422-427. | |
16 | Kang J, Ma W, Keogh R A, et al. Hydrocracking and hydroisomerization of n-hexadecane, n-octacosane and Fischer-Tropsch wax over a Pt/SiO2-Al2O3 catalyst[J]. Catalysis Letters, 2012, 142(11): 1295-1305. |
17 | Möller K, le Grange P, Accolla C. A two-phase reactor model for the hydrocracking of Fischer-Tropsch-derived wax[J]. Industrial & Engineering Chemistry Research, 2009, 48(8): 3791-3801. |
18 | Aimáček P, Kubička D, Pospíšil M, et al. Fischer-Tropsch product as a co-feed for refinery hydrocracking unit[J]. Fuel, 2013, 105(8): 432-439. |
19 | Calemma V, Gambaro C, Parker W O, et al. Middle distillates from hydrocracking of FT waxes: composition, characteristics and emission properties[J]. Catalysis Today, 2010, 149(1): 40-46. |
20 | Eisenberg B, Fiato R A, Mauldin H, et al. Exxon s advanced gas-to-liquids technology[M]//Studies in Surface Science and Catalysis. Parmaliana A, Sanfilippo D, Frusteri F,et al. Amsterdam: Elsevier, 1998: 119, 943-948. |
21 | Espinoza R L, Steynberg A P, Jager B, et al. Low temperature Fischer-Tropsch synthesis from a Sasol perspective[J]. Applied Catalysis A: General, 1999, 186(1): 13-26. |
22 | Hodala J L, Jung J, Yang E, et al. Hydrocracking of FT-wax to fuels over non-noble metal catalysts[J]. Fuel, 2016, 185(12): 339-347. |
23 | Gambaro C, Calemma V, Molinari D, et al. Hydrocracking of Fischer-Tropsch waxes: kinetic modeling via LHHW approach[J]. AIChE Journal, 2011, 57(3): 711-723. |
24 | Dupain X, Krul R A, Makkee M, et al. Are Fischer-Tropsch waxes good feedstocks for fluid catalytic cracking units?[J]. Catalysis Today, 2005, 106(1/2/3/4): 288-292. |
25 | Lappas A A, Iatridis D K, Vasalos I A. Production of liquid biofuels in a fluid catalytic cracking pilot-plant unit using waxes produced from a biomass-to-liquid (BTL) process[J]. Industrial & Engineering Chemistry Research, 2011, 50(2): 531-538. |
26 | Abbot J, Wojciechowski B W. Catalytic cracking on HY and HZSM-5 of a Fischer-Tropsch product[J]. Industrial & Engineering Chemistry Product Research and Development, 1985, 24(4): 501-507. |
27 | 刘伟成, 田志坚, 徐竹生. 正癸烷脱氢生成直链单烯烃的热力学分析[J]. 石油学报(石油加工), 2001, 17(4): 39-43. |
Liu W C, Tian Z J, Xu Z S. A thermodynamic analysis on dehydrogenation of n-decane to decene[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2001, 17(4): 39-43. | |
28 | 魏伟, 孙予罕, 钟炳. 正十二烷脱氢制直链十二单烯的热力学计算[J]. 石油化工, 2000, 29(8): 582-585. |
Wei W, Sun Y H, Zhong B. Thermodynamic calculations for catalytic dehydrogenation of dodecane to dodecene[J]. Petrochemical Technology, 2000, 29(8): 582-585. | |
29 | 梁文杰. 重质油化学[M]. 东营: 石油大学出版社, 2000. |
Liang W J. Heavy Oil Chemistry[M]. Dongying: Petroleum University Press, 2000. | |
30 | Reynhardt E C. NMR investigation of Fischer-Tropsch waxes (Ⅲ): 13C and 1H study of oxidised hard wax[J]. Journal of Physics D: Applied Physics, 1985, 18(12): 2519-2528. |
31 | 王松汉. 石油化工设计手册. 第1卷, 石油化工基础数据[M]. 北京: 化学工业出版社, 2002. |
Wang S H. Handbook of Petrochemical Design. Volume1.Petrochemical Basic Data [M]. Beijing: Chemical Industry Press, 2002. | |
32 | 王峰, 任杰, 李永旺.密度泛函法计算C1~C14正构烃生成焓及C—C键裂解能[J]. 应用化学, 2009, 26(12): 1484-1488. |
Wang F, Ren J, Li Y W. Enthalpies of formation and C—C bond dissociation energies of C1—C14 alkanes and alkyl radicals calculated via density functional theory methods[J]. Chinese Journal of Applied Chemistry, 2009, 26(12): 1484-1488. | |
33 | 陶海桥, 龙军, 周涵, 等. 2-甲基戊烷分子中C—H键和C—C键异裂的分子模拟[J]. 计算机与应用化学, 2010, 27(7): 871-874. |
Tao H Q, Long J, Zhou H, et al. Molecular simulation studies on heterolysis of C—H and C—C bonds in 2-methylpentane [J]. Computers and Applied Chemistry, 2010, 27(7): 871-874. | |
34 | Miguel A R, Ancheyta J. Detailed description of kinetic and reactor modeling for naphtha catalytic reforming[J]. Fuel, 2011, 90(12): 3492-3508. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[3] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[4] | Laiming LUO, Jin ZHANG, Zhibin GUO, Haining WANG, Shanfu LU, Yan XIANG. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range [J]. CIESC Journal, 2023, 74(4): 1724-1734. |
[5] | Zhiguang QIAN, Yue FAN, Shixue WANG, Like YUE, Jinshan WANG, Yu ZHU. Effect of purging conditions on the impedance relaxation phenomenon and low temperature start-up of PEMFC [J]. CIESC Journal, 2023, 74(3): 1286-1293. |
[6] | Jiaqing ZHANG, Rongpei JIANG, Weikang SHI, Boxiang WU, Chao YANG, Zhaohui LIU. Study on viscosity-temperature characteristics and component characteristics of rocket kerosene [J]. CIESC Journal, 2023, 74(2): 653-665. |
[7] | Jiachen SUN, Chunlei PEI, Sai CHEN, Zhijian ZHAO, Shengbao HE, Jinlong GONG. Advances in chemical-looping oxidative dehydrogenation of light alkanes [J]. CIESC Journal, 2023, 74(1): 205-223. |
[8] | Feng WANG, Shunxin ZHANG, Fangbo YU, Ya LIU, Liejin GUO. Optimization strategy for producing carbon based fuels by photocatalytic CO2 reduction [J]. CIESC Journal, 2023, 74(1): 29-44. |
[9] | Xiang GUO, Jinshuo QIAO, Zhenhua WANG, Wang SUN, Kening SUN. Progress of structure for carbon-fueled solid oxide fuel cells [J]. CIESC Journal, 2023, 74(1): 290-302. |
[10] | Jiawang YONG, Qianqian ZHAO, Nenglian FENG. Fault diagnosis of proton exchange membrane fuel cell based on nonlinear dynamic model [J]. CIESC Journal, 2022, 73(9): 3983-3993. |
[11] | Wanchen ZHANG, Xiaoyang CHEN, Qiuqiu LYU, Qin ZHONG, Tenglong ZHU. Performance and durability of cobalt doped SrTi0.3Fe0.7O3-δ anode SOFC fueled with by-product gas from chemical industry [J]. CIESC Journal, 2022, 73(9): 4079-4086. |
[12] | Zeguang HAO, Qian ZHANG, Zenglin GAO, Hongwen ZHANG, Zeyu PENG, Kai YANG, Litong LIANG, Wei HUANG. Study on synergistic effect of biomass and FCC slurry co-pyrolysis [J]. CIESC Journal, 2022, 73(9): 4070-4078. |
[13] | Jian SHAO, Junzong FENG, Fengqi LIU, Yonggang JIANG, Liangjun LI, Jian FENG. Research progress on structural modulation and functionalized preparation of phenolic resin-based carbon microspheres [J]. CIESC Journal, 2022, 73(9): 3787-3801. |
[14] | Huihuang FANG, Jinxing CHENG, Yu LUO, Chongqi CHEN, Chen ZHOU, Lilong JIANG. Recent progress on ammonia oxidation catalysts at anode and their performances in low-temperature direct ammonia alkaline exchange membrane fuel cells [J]. CIESC Journal, 2022, 73(9): 3802-3814. |
[15] | Tong ZHANG, Yang YANG, Dingding YE, Rong CHEN, Xun ZHU, Qiang LIAO. Effect of catalyst distribution on the performance characteristics of microfluidic fuel cell with flow-through anode [J]. CIESC Journal, 2022, 73(9): 4156-4162. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||