CIESC Journal ›› 2022, Vol. 73 ›› Issue (9): 3802-3814.DOI: 10.11949/0438-1157.20220327
• Reviews and monographs • Previous Articles Next Articles
Huihuang FANG(), Jinxing CHENG, Yu LUO(), Chongqi CHEN, Chen ZHOU, Lilong JIANG()
Received:
2022-03-02
Revised:
2022-07-28
Online:
2022-10-09
Published:
2022-09-05
Contact:
Yu LUO, Lilong JIANG
方辉煌(), 程金星, 罗宇(), 陈崇启, 周晨, 江莉龙()
通讯作者:
罗宇,江莉龙
作者简介:
方辉煌(1991—),男,博士,副研究员,hhfang@fzu.edu.cn
基金资助:
CLC Number:
Huihuang FANG, Jinxing CHENG, Yu LUO, Chongqi CHEN, Chen ZHOU, Lilong JIANG. Recent progress on ammonia oxidation catalysts at anode and their performances in low-temperature direct ammonia alkaline exchange membrane fuel cells[J]. CIESC Journal, 2022, 73(9): 3802-3814.
方辉煌, 程金星, 罗宇, 陈崇启, 周晨, 江莉龙. 氨电氧化催化剂及其低温直接氨碱性膜燃料电池性能的研究进展[J]. 化工学报, 2022, 73(9): 3802-3814.
Add to citation manager EndNote|Ris|BibTeX
反应中间物质 | 表征技术 | 文献 |
---|---|---|
N-3参与AOR反应 | SERS | [ |
N2H4、NO中间体;NO抑制了电化学反应 | ATR-IR | [ |
低电位区(E(vs SCE)<-0.50 V):N2H4、NH2 | FTIR | [ |
高电位区(E(vs SCE)>-0.10 V):N2O、NO2- | FTIR | [ |
NO、NO2、N2H4 | ATR-FTIR | [ |
N2、NO和N2O | DEMS | [ |
Table 1 The intermediates of AOR process by in situ characterization techniques
反应中间物质 | 表征技术 | 文献 |
---|---|---|
N-3参与AOR反应 | SERS | [ |
N2H4、NO中间体;NO抑制了电化学反应 | ATR-IR | [ |
低电位区(E(vs SCE)<-0.50 V):N2H4、NH2 | FTIR | [ |
高电位区(E(vs SCE)>-0.10 V):N2O、NO2- | FTIR | [ |
NO、NO2、N2H4 | ATR-FTIR | [ |
N2、NO和N2O | DEMS | [ |
催化剂 | 电解液溶液 | 扫描速率/ (mV·s-1) | 起始电位 (vs RHE)/V | 峰值电流密度 | 文献 |
---|---|---|---|---|---|
PtIr/CNT (Pt∶Ir=4∶1) | 0.1 mol·L-1 NH3 + 0.1 mol·L-1 KOH | 50 | 0.38 | 230 mA·cm-2 ECSA | [ |
PtIr/N-rGO (Pt∶Ir=1∶3) | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 10 | 约0.37 | 71 A·g-1 | [ |
PtRh/C (Pt∶Rh=9∶1) | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 20 | -0.44① | 93.8 A·g-1 | [ |
Pt/SiO2-CNT | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 5 | 0.484 | 77.3 A·g-1 | [ |
PtIr/C | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 5 | 0.43 | 25.1 A·g-1 | [ |
Pt5Ir5/SiO2-CNT | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 5 | 0.369 | 66.3 A·g-1 | [ |
PtIr/ SiO2-CNT (Pt∶Ir=9∶1) | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 5 | 0.42 | 90.6 A·g-1 | [ |
PtIrNi1/SiO2-CNT (Pt∶Ir=9∶1) | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 5 | 0.399 | 124 A·g-1 | [ |
PtZn | 0.1 mol·L-1 NH3 + 0.5 mol·L-1 KOH | 100 | 0.42 | 0.60 mA·cm-2 ECSA | [ |
PtIrZn (Pt∶Ir=8∶2) | 0.1 mol·L-1 NH3 + 0.5 mol·L-1 KOH | 100 | 0.30 | 0.56 mA·cm-2 ECSA | [ |
CuPtRu (Pt∶Ru=7∶1) | 1 mol·L-1 KOH saturated with NH3 | 20 | 0.49 | 180 A·g-1 | [ |
PtIrZn2/CeO2-ZIF-8 | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 5 | 0.35 | 31.8 A·g-1 | [ |
PtIrZn2/SiO2-CNT-COOH | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 5 | 0.35 | 61.4 A·g-1 | [ |
PtIr/SiO2-CNT-COOH | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 5 | 0.33 | 64.6 A·g-1 | [ |
PtIrCu HCOND | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 5 | 0.35 | 122.9 A·g-1 | [ |
PtNi | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 10 | 0.69 | 75 A·g-1 | [ |
PtAu/C (Pt∶Au=7∶3) | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 20 | 0.51 | 90 A·g-1 | [ |
PtNi | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 10 | 约0.5 | 75.32 A·g-1 | [ |
Pt/C | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 50 | 约0.52② | 39.9 A·g-1 | [ |
PtNi/C | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 50 | 约0.55② | 76.4 A·g-1 | [ |
PtNiO/C | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 50 | 约0.55② | 86.9 A·g-1 | [ |
Ni98Pd2 | 0.5 mol·L-1 NaNO3 + 0.2 mol·L-1 NH4NO3 | 50 | 1.3① | 150 A·g-1 | [ |
NiCu/C | 55 m mol·L-1 NH4Cl + 0.5 mol·L-1 NaOH | 25 | 0.47② | 52 mA·cm-2 | [ |
NiCu/C | 0.5 mol·L-1 NH3 + 1 mol·L-1 KOH | 50 | 0.4① | 110.4 mA·cm-2 | [ |
NiCu/C | 55 m mol·L-1 NH4Cl + 0.5 mol·L-1 NaOH | 25 | 0.43① | 105 mA·cm-2 | [ |
Ni(OH)2/C | 55 m mol·L-1 NH4Cl + 0.5 mol·L-1 NaOH | 25 | 0.43① | 15 mA·cm-2 | [ |
NiCr/C | 55 m mol·L-1 NH4Cl + 0.5 mol·L-1 NaOH | 25 | 0.40① | 10 mA·cm-2 | [ |
NiMn/C | 55 m mol·L-1 NH4Cl + 0.5 mol·L-1 NaOH | 25 | 0.40① | 20 mA·cm-2 | [ |
NiCo/C | 55 m mol·L-1 NH4Cl + 0.5 mol·L-1 NaOH | 25 | 0.35① | 10 mA·cm-2 | [ |
NiZn/C | 55 m mol·L-1 NH4Cl + 0.5 mol·L-1 NaOH | 25 | 0.45① | 2 mA·cm-2 | [ |
Ni(OH)2 on NiOOH | 0.1 mol·L-1 NaSO4 + 0.003 mol·L-1 NH3 | 10 | 0.6① | 2.7 mA·cm-2 | [ |
①vs Hg/HgO。 ②vs Ag/AgCl。 |
Table 2 Activity of AOR over non-/noble metallic catalysts
催化剂 | 电解液溶液 | 扫描速率/ (mV·s-1) | 起始电位 (vs RHE)/V | 峰值电流密度 | 文献 |
---|---|---|---|---|---|
PtIr/CNT (Pt∶Ir=4∶1) | 0.1 mol·L-1 NH3 + 0.1 mol·L-1 KOH | 50 | 0.38 | 230 mA·cm-2 ECSA | [ |
PtIr/N-rGO (Pt∶Ir=1∶3) | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 10 | 约0.37 | 71 A·g-1 | [ |
PtRh/C (Pt∶Rh=9∶1) | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 20 | -0.44① | 93.8 A·g-1 | [ |
Pt/SiO2-CNT | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 5 | 0.484 | 77.3 A·g-1 | [ |
PtIr/C | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 5 | 0.43 | 25.1 A·g-1 | [ |
Pt5Ir5/SiO2-CNT | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 5 | 0.369 | 66.3 A·g-1 | [ |
PtIr/ SiO2-CNT (Pt∶Ir=9∶1) | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 5 | 0.42 | 90.6 A·g-1 | [ |
PtIrNi1/SiO2-CNT (Pt∶Ir=9∶1) | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 5 | 0.399 | 124 A·g-1 | [ |
PtZn | 0.1 mol·L-1 NH3 + 0.5 mol·L-1 KOH | 100 | 0.42 | 0.60 mA·cm-2 ECSA | [ |
PtIrZn (Pt∶Ir=8∶2) | 0.1 mol·L-1 NH3 + 0.5 mol·L-1 KOH | 100 | 0.30 | 0.56 mA·cm-2 ECSA | [ |
CuPtRu (Pt∶Ru=7∶1) | 1 mol·L-1 KOH saturated with NH3 | 20 | 0.49 | 180 A·g-1 | [ |
PtIrZn2/CeO2-ZIF-8 | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 5 | 0.35 | 31.8 A·g-1 | [ |
PtIrZn2/SiO2-CNT-COOH | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 5 | 0.35 | 61.4 A·g-1 | [ |
PtIr/SiO2-CNT-COOH | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 5 | 0.33 | 64.6 A·g-1 | [ |
PtIrCu HCOND | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 5 | 0.35 | 122.9 A·g-1 | [ |
PtNi | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 10 | 0.69 | 75 A·g-1 | [ |
PtAu/C (Pt∶Au=7∶3) | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 20 | 0.51 | 90 A·g-1 | [ |
PtNi | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 10 | 约0.5 | 75.32 A·g-1 | [ |
Pt/C | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 50 | 约0.52② | 39.9 A·g-1 | [ |
PtNi/C | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 50 | 约0.55② | 76.4 A·g-1 | [ |
PtNiO/C | 0.1 mol·L-1 NH3 + 1 mol·L-1 KOH | 50 | 约0.55② | 86.9 A·g-1 | [ |
Ni98Pd2 | 0.5 mol·L-1 NaNO3 + 0.2 mol·L-1 NH4NO3 | 50 | 1.3① | 150 A·g-1 | [ |
NiCu/C | 55 m mol·L-1 NH4Cl + 0.5 mol·L-1 NaOH | 25 | 0.47② | 52 mA·cm-2 | [ |
NiCu/C | 0.5 mol·L-1 NH3 + 1 mol·L-1 KOH | 50 | 0.4① | 110.4 mA·cm-2 | [ |
NiCu/C | 55 m mol·L-1 NH4Cl + 0.5 mol·L-1 NaOH | 25 | 0.43① | 105 mA·cm-2 | [ |
Ni(OH)2/C | 55 m mol·L-1 NH4Cl + 0.5 mol·L-1 NaOH | 25 | 0.43① | 15 mA·cm-2 | [ |
NiCr/C | 55 m mol·L-1 NH4Cl + 0.5 mol·L-1 NaOH | 25 | 0.40① | 10 mA·cm-2 | [ |
NiMn/C | 55 m mol·L-1 NH4Cl + 0.5 mol·L-1 NaOH | 25 | 0.40① | 20 mA·cm-2 | [ |
NiCo/C | 55 m mol·L-1 NH4Cl + 0.5 mol·L-1 NaOH | 25 | 0.35① | 10 mA·cm-2 | [ |
NiZn/C | 55 m mol·L-1 NH4Cl + 0.5 mol·L-1 NaOH | 25 | 0.45① | 2 mA·cm-2 | [ |
Ni(OH)2 on NiOOH | 0.1 mol·L-1 NaSO4 + 0.003 mol·L-1 NH3 | 10 | 0.6① | 2.7 mA·cm-2 | [ |
①vs Hg/HgO。 ②vs Ag/AgCl。 |
膜 | 燃料 | 阳极催化剂 | 阴极催化剂 | 温度/℃ | 峰值功率密度/ (mW·cm-2) | 文献 |
---|---|---|---|---|---|---|
AEM (PAP-TP) | 3 mol·L-1 NH3 3 mol·L-1 KOH | PtIr/C 2 mg PGM·cm-2 | Acta 4020 1 mg·cm-2 | 80 | 135 | [ |
AEM (PAP-TP) | 7 mol·L-1 NH3 1.25 mol·L-1 KOH | PtIr/C 2 mg PGM·cm-2 | Acta 4020 1 mg·cm-2 | 95 | 390 (0.2 MPa) | [ |
AEM (PAP-TP) | 7 mol·L-1 NH3 1.25 mol·L-1 KOH | PtIr/C 2 mg PGM·cm-2 | Pd/C 0.4 mg·cm-2 | 95 | 304 (0.2 MPa) | [ |
AEM | NH3 | Pt/C 2 mg Pt·cm-2 | PGM-free | 100 | 420 | [ |
HEM (AHA) | 0.2 mol·L-1 NH3 1 mol·L-1 KOH | Pt/C 0.6 mg Pt·cm-2 | Pt/C 0.6 mg Pt·cm-2 | 80 | 0.22 | [ |
HEM (CPPO-PVA) | NH3 | Cr-Ni/C 10 mg·cm-2 | MnO2/C 20 mg·cm-2 | 25 | 11 | [ |
HEM (Resin-PVA) | 35% NH3 | Cr-Ni/C 10 mg·cm-2 | MnO2/C 20 mg·cm-2 | 25 | 9 | [ |
HEM (AMI-7001) | NH3 | Pt/C 0.45 mg Pt·cm-2 | Pt/C 0.45 mg Pt·cm-2 | 65 | 0.26 | [ |
HEM (AMI-7001) | 1 mol·L-1 NH3 | Pt/C 0.45 mg Pt·cm-2 | Pt/C 0.45 mg Pt·cm-2 | 25 | 0.71 | [ |
Mg-Al-CO32- LDH | 5 mol·L-1 MH3 1 mol·L-1 KOH | PtRu 3.3 mg·cm-2 | Pt/C | 80 | 4.5 | [ |
FAA AEM | 35% NH3 1 mol·L-1 KOH | NiCu/C 2.5 mg·cm-2 | SrCo0.8Cu0.1 Nb0.1O3-δ 18.67 mg·cm-2 | 25 | 0.25 | [ |
PAP-TP | NH3 + N2 | PtIr 2 mg PGM·cm-2 | Fe-N-C 3 mg·cm-2 | 95 | 75 | [ |
Tokuyama membrance | 16 mol·L-1 NH3 | Pt1Ir10 2 mg PGM·cm-2 | Ag 2 mg·cm-2 | 120 | 180 | [ |
Tokuyama membrance | 12 mol·L-1 NH3 2.5 mol·L-1 KOH | Pt1Ir10 2 mg PGM·cm-2 | Ag 2 mg·cm-2 | 100 | 280 | [ |
AEM (A201) | NH3 | Pt/C 0.5 mg Pt·cm-2 | Pt/C 0.5 mg Pt·cm-2 | 50 | 4.76 | [ |
AEM (A201) | NH3 | PtRu/C 0.5 mg Pt·cm-2 | Pt/C 0.5 mg Pt·cm-2 | 50 | 3.07 | [ |
AEM (A201) | NH3 | SnO2-Pt/C 0.4 mg Pt·cm-2 | Pt/C 0.4 mg Pt·cm-2 | 50 | 4.15 | [ |
Table 3 AEM-DAFC performance with various catalysts
膜 | 燃料 | 阳极催化剂 | 阴极催化剂 | 温度/℃ | 峰值功率密度/ (mW·cm-2) | 文献 |
---|---|---|---|---|---|---|
AEM (PAP-TP) | 3 mol·L-1 NH3 3 mol·L-1 KOH | PtIr/C 2 mg PGM·cm-2 | Acta 4020 1 mg·cm-2 | 80 | 135 | [ |
AEM (PAP-TP) | 7 mol·L-1 NH3 1.25 mol·L-1 KOH | PtIr/C 2 mg PGM·cm-2 | Acta 4020 1 mg·cm-2 | 95 | 390 (0.2 MPa) | [ |
AEM (PAP-TP) | 7 mol·L-1 NH3 1.25 mol·L-1 KOH | PtIr/C 2 mg PGM·cm-2 | Pd/C 0.4 mg·cm-2 | 95 | 304 (0.2 MPa) | [ |
AEM | NH3 | Pt/C 2 mg Pt·cm-2 | PGM-free | 100 | 420 | [ |
HEM (AHA) | 0.2 mol·L-1 NH3 1 mol·L-1 KOH | Pt/C 0.6 mg Pt·cm-2 | Pt/C 0.6 mg Pt·cm-2 | 80 | 0.22 | [ |
HEM (CPPO-PVA) | NH3 | Cr-Ni/C 10 mg·cm-2 | MnO2/C 20 mg·cm-2 | 25 | 11 | [ |
HEM (Resin-PVA) | 35% NH3 | Cr-Ni/C 10 mg·cm-2 | MnO2/C 20 mg·cm-2 | 25 | 9 | [ |
HEM (AMI-7001) | NH3 | Pt/C 0.45 mg Pt·cm-2 | Pt/C 0.45 mg Pt·cm-2 | 65 | 0.26 | [ |
HEM (AMI-7001) | 1 mol·L-1 NH3 | Pt/C 0.45 mg Pt·cm-2 | Pt/C 0.45 mg Pt·cm-2 | 25 | 0.71 | [ |
Mg-Al-CO32- LDH | 5 mol·L-1 MH3 1 mol·L-1 KOH | PtRu 3.3 mg·cm-2 | Pt/C | 80 | 4.5 | [ |
FAA AEM | 35% NH3 1 mol·L-1 KOH | NiCu/C 2.5 mg·cm-2 | SrCo0.8Cu0.1 Nb0.1O3-δ 18.67 mg·cm-2 | 25 | 0.25 | [ |
PAP-TP | NH3 + N2 | PtIr 2 mg PGM·cm-2 | Fe-N-C 3 mg·cm-2 | 95 | 75 | [ |
Tokuyama membrance | 16 mol·L-1 NH3 | Pt1Ir10 2 mg PGM·cm-2 | Ag 2 mg·cm-2 | 120 | 180 | [ |
Tokuyama membrance | 12 mol·L-1 NH3 2.5 mol·L-1 KOH | Pt1Ir10 2 mg PGM·cm-2 | Ag 2 mg·cm-2 | 100 | 280 | [ |
AEM (A201) | NH3 | Pt/C 0.5 mg Pt·cm-2 | Pt/C 0.5 mg Pt·cm-2 | 50 | 4.76 | [ |
AEM (A201) | NH3 | PtRu/C 0.5 mg Pt·cm-2 | Pt/C 0.5 mg Pt·cm-2 | 50 | 3.07 | [ |
AEM (A201) | NH3 | SnO2-Pt/C 0.4 mg Pt·cm-2 | Pt/C 0.4 mg Pt·cm-2 | 50 | 4.15 | [ |
30 | Katsounaros I, Chen T, Gewirth A A, et al. Evidence for decoupled electron and proton transfer in the electrochemical oxidation of ammonia on Pt(100)[J]. The Journal of Physical Chemistry Letters, 2016, 7(3): 387-392. |
31 | Li H J, Li Y D, Koper M T M, et al. Bond-making and breaking between carbon, nitrogen, and oxygen in electrocatalysis[J]. Journal of the American Chemical Society, 2014, 136(44): 15694-15701. |
32 | Estejab A, Botte G G. Ammonia oxidation kinetics on bimetallic clusters of platinum and iridium: a theoretical approach[J]. Molecular Catalysis, 2018, 445: 279-292. |
33 | Adli N M, Zhang H, Mukherjee S, et al. Review—ammonia oxidation electrocatalysis for hydrogen generation and fuel cells[J]. Journal of the Electrochemical Society, 2018, 165(15): J3130-J3147. |
34 | Medford A J, Vojvodic A, Hummelshøj J S, et al. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis[J]. Journal of Catalysis, 2015, 328: 36-42. |
35 | Novell-Leruth G, Valcarcel A, Clotet A, et al. DFT characterization of adsorbed NH x species on Pt(100) and Pt(111) surfaces[J]. The Journal of Physical Chemistry. B, 2005, 109(38): 18061-18069. |
36 | Novell-Leruth G, Valcárcel A, Pérez-Ramírez J, et al. Ammonia dehydrogenation over platinum-group metal surfaces. Structure, stability, and reactivity of adsorbed NH x species[J]. The Journal of Physical Chemistry C, 2007, 111(2): 860-868. |
37 | Daramola D A, Botte G G. Theoretical study of ammonia oxidation on platinum clusters—adsorption of ammonia and water fragments[J]. Computational and Theoretical Chemistry, 2012, 989: 7-17. |
38 | Estejab A, Botte G G. DFT calculations of ammonia oxidation reactions on bimetallic clusters of platinum and iridium[J]. Computational and Theoretical Chemistry, 2016, 1091: 31-40. |
39 | Katsounaros I, Figueiredo M C, Calle-Vallejo F, et al. On the mechanism of the electrochemical conversion of ammonia to dinitrogen on Pt(100) in alkaline environment[J]. Journal of Catalysis, 2018, 359: 82-91. |
40 | Peng W, Xiao L, Huang B, et al. Inhibition effect of surface oxygenated species on ammonia oxidation reaction[J]. The Journal of Physical Chemistry C, 2011, 115(46): 23050-23056. |
41 | Yang K R, Liu J, Yang B. Mechanism and active species in NH3 dehydrogenation under an electrochemical environment: an Ab initio molecular dynamics study[J]. ACS Catalysis, 2021, 11(7): 4310-4318. |
42 | Vidal-Iglesias F J, Garcı́a-Aráez N, Montiel V, et al. Selective electrocatalysis of ammonia oxidation on Pt(100) sites in alkaline medium[J]. Electrochemistry Communications, 2003, 5(1): 22-26. |
43 | Vidal-Iglesias F J, Solla-Gullón J, Montiel V, et al. Ammonia selective oxidation on Pt(100) sites in an alkaline medium[J]. The Journal of Physical Chemistry. B, 2005, 109(26): 12914-12919. |
44 | Rosca V, Koper M T M. Electrocatalytic oxidation of hydrazine on platinum electrodes in alkaline solutions[J]. Electrochimica Acta, 2008, 53(16): 5199-5205. |
45 | Bertin E, Garbarino S, Guay D, et al. Electrodeposited platinum thin films with preferential (100) orientation: characterization and electrocatalytic properties for ammonia and formic acid oxidation[J]. Journal of Power Sources, 2013, 225: 323-329. |
46 | Zhang C L, Hwang S Y, Peng Z M. Shape-enhanced ammonia electro-oxidation property of a cubic platinum nanocrystal catalyst prepared by surfactant-free synthesis[J]. Journal of Materials Chemistry A, 2013, 1(45): 14402. |
47 | Fu G T, Liu C, Wu R, et al. L-Lysine mediated synthesis of platinum nanocuboids and their electrocatalytic activity towards ammonia oxidation[J]. J. Mater. Chem. A, 2014, 2(42): 17883-17888. |
48 | Zhong C, Liu J, Ni Z Y, et al. Shape-controlled synthesis of Pt-Ir nanocubes with preferential (100) orientation and their unusual enhanced electrocatalytic activities[J]. Science China Materials, 2014, 57(1): 13-25. |
49 | Zhong C, Hu W B, Cheng Y F. On the essential role of current density in electrocatalytic activity of the electrodeposited platinum for oxidation of ammonia[J]. Journal of Power Sources, 2011, 196(19): 8064-8072. |
50 | Liu J, Hu W B, Zhong C, et al. Surfactant-free electrochemical synthesis of hierarchical platinum particle electrocatalysts for oxidation of ammonia[J]. Journal of Power Sources, 2013, 223: 165-174. |
51 | Liu J, Zhong C, Yang Y, et al. Electrochemical preparation and characterization of Pt particles on ITO substrate: morphological effect on ammonia oxidation[J]. International Journal of Hydrogen Energy, 2012, 37(11): 8981-8987. |
52 | Wang X X, Sokolowski J, Liu H, et al. Pt alloy oxygen-reduction electrocatalysts: synthesis, structure, and property[J]. Chinese Journal of Catalysis, 2020, 41(5): 739-755. |
53 | Ribeiro V A, de Freitas I C, Neto A O, et al. Platinum nanoparticles supported on nitrogen-doped carbon for ammonia electro-oxidation[J]. Materials Chemistry and Physics, 2017, 200: 354-360. |
54 | Hanada N, Kohase Y, Hori K, et al. Electrolysis of ammonia in aqueous solution by platinum nanoparticles supported on carbon nanotube film electrode[J]. Electrochimica Acta, 2020, 341: 136027. |
55 | Zhou Y F, Zhang G Q, Yu M C, et al. High mass and specific activity for ammonia electro-oxidation through optimization of dispersion degree and particle size of Pt-Ir nanoparticles over N-doped reductive graphene oxide[J]. ChemistrySelect, 2018, 3(12): 3433-3443. |
56 | 郁明珠, 李林儒, 陆天虹, 等. 碳化钨和Vulcan XC-72炭混合载Ir催化剂对氨氧化的电催化性能[J]. 应用化学, 2013, 30(4): 448-452. |
Yu M Z, Li L R, Lu T H, et al. Electrocatalytic performance of Ir catalyst supported on mixture of WC and Vulcan XC-72 carbon for ammonia oxidation[J]. Chinese Journal of Applied Chemistry, 2013, 30(4): 448-452. | |
57 | 李林儒, 付宏刚, 陆天虹. 石墨烯载Ir催化剂对氨氧化的电催化性能[J]. 高等学校化学学报, 2012, 33(1): 102-106. |
Li L R, Fu H G, Lu T H. Electrocatalytic performance of graphene supported Ir catalyst for ammonia oxidation[J]. Chemical Journal of Chinese Universities, 2012, 33(1): 102-106. | |
58 | Ntais S, Serov A, Andersen N I, et al. Promotion of ammonia electrooxidation on Pt nanoparticles by nickel oxide support[J]. Electrochimica Acta, 2016, 222: 1455-1463. |
59 | 黄璐, 杨瑶, 潘道东. 二氧化钛载Ir催化剂对氨氧化的电催化[J]. 应用化学, 2013, 30(5): 584-589. |
Huang L, Yang Y, Pan D D. Electrocatalytic oxidation of ammonia with Ir catalysts supported on TiO2 [J]. Chinese Journal of Applied Chemistry, 2013, 30(5): 584-589. | |
60 | Zhang C, Xu L, Yan Y, et al. Controlled synthesis of Pt nanowires with ordered large mesopores for methanol oxidation reaction[J]. Scientific Reports, 2016, 6(1): 1-8. |
61 | Silva J C M, Piasentin R M, Spinacé E V, et al. The effect of antimony-tin and indium-tin oxide supports on the catalytic activity of Pt nanoparticles for ammonia electro-oxidation[J]. Materials Chemistry and Physics, 2016, 180: 97-103. |
62 | Okanishi T, Katayama Y, Muroyama H, et al. SnO2-modified Pt electrocatalysts for ammonia-fueled anion exchange membrane fuel cells[J]. Electrochimica Acta, 2015, 173: 364-369. |
63 | Katayama Y, Okanishi T, Muroyama H, et al. Electrochemical oxidation of ammonia over rare earth oxide modified platinum catalysts[J]. The Journal of Physical Chemistry C, 2015, 119(17): 9134-9141. |
64 | Katayama Y, Okanishi T, Muroyama H, et al. Enhancement of ammonia oxidation activity over Y2O3-modified platinum surface: promotion of NH2, ad dimerization process[J]. Journal of Catalysis, 2016, 344: 496-506. |
1 | Crabtree G W, Dresselhaus M S. The hydrogen fuel alternative[J]. MRS Bulletin, 2008, 33(4): 421-428. |
2 | 朱明原, 刘文博, 刘杨, 等. 氢能与燃料电池关键科学技术: 挑战与前景[J]. 上海大学学报(自然科学版), 2021, 27(3): 411-443. |
Zhu M Y, Liu W B, Liu Y, et al. Key scientific and technological principles of hydrogen energy and fuel cells: challenges and prospects[J]. Journal of Shanghai University (Natural Science Edition), 2021, 27(3): 411-443. | |
3 | 郭朋彦, 聂鑫鑫, 张瑞珠, 等. 氨燃料电池的研究现状及发展趋势[J]. 电源技术, 2019, 43(7): 1233-1236. |
Guo P Y, Nie X X, Zhang R Z, et al. Research status and development trend of ammonia fuel cells[J]. Chinese Journal of Power Sources, 2019, 43(7): 1233-1236. | |
4 | Eberle U, Felderhoff M, Schüth F. Chemical and physical solutions for hydrogen storage[J]. Angewandte Chemie International Edition, 2009, 48(36): 6608-6630. |
5 | Jiao F, Xu B J. Electrochemical ammonia synthesis and ammonia fuel cells[J]. Advanced Materials, 2019, 31(31): 1805173. |
6 | 高金良, 袁泽明, 尚宏伟, 等. 氢储存技术及其储能应用研究进展[J]. 金属功能材料, 2016, 23(1): 1-11. |
Gao J L, Yuan Z M, Shang H W, et al. Research progress on storage technology and stored energy application of hydrogen[J]. Metallic Functional Materials, 2016, 23(1): 1-11. | |
7 | Lan R, Irvine J T S, Tao S W. Ammonia and related chemicals as potential indirect hydrogen storage materials[J]. International Journal of Hydrogen Energy, 2012, 37(2): 1482-1494. |
8 | Zhong C, Hu W B, Cheng Y F. Recent advances in electrocatalysts for electro-oxidation of ammonia[J]. J. Mater. Chem. A, 2013, 1(10): 3216-3238. |
9 | Valera-Medina A, Xiao H, Owen-Jones M, et al. Ammonia for power[J]. Progress in Energy and Combustion Science, 2018, 69: 63-102. |
10 | 徐也茗, 郑传明, 张韫宏. 氨能源作为清洁能源的应用前景[J]. 化学通报, 2019, 82(3): 214-220. |
65 | Lomocso T L, Baranova E A. Electrochemical oxidation of ammonia on carbon-supported bi-metallic PtM (M = Ir, Pd, SnO x ) nanoparticles[J]. Electrochimica Acta, 2011, 56(24): 8551-8558. |
66 | Allagui A, Oudah M, Tuaev X, et al. Ammonia electro-oxidation on alloyed PtIr nanoparticles of well-defined size[J]. International Journal of Hydrogen Energy, 2013, 38(5): 2455-2463. |
67 | Imbeault R, Finkelstein D, Reyter D, et al. Kinetically stable Pt x Ir100- x alloy thin films prepared by pulsed laser deposition: oxidation of NH3 and poisoning resistance[J]. Electrochimica Acta, 2014, 142: 289-298. |
68 | Morita S, Kudo E, Shirasaka R, et al. Electrochemical oxidation of ammonia by multi-wall-carbon-nanotube-supported Pt shell-Ir core nanoparticles synthesized by an improved Cu short circuit deposition method[J]. Journal of Electroanalytical Chemistry, 2016, 762: 29-36. |
69 | Chan Y T, Siddharth K, Shao M H. Investigation of cubic Pt alloys for ammonia oxidation reaction[J]. Nano Research, 2020, 13(7): 1920-1927. |
70 | Siddharth K, Chan Y, Wang L, et al. Ammonia electro-oxidation reaction: recent development in mechanistic understanding and electrocatalyst design[J]. Current Opinion in Electrochemistry, 2018, 9: 151-157. |
71 | Bonnin E P, Biddinger E J, Botte G G. Effect of catalyst on electrolysis of ammonia effluents[J]. Journal of Power Sources, 2008, 182(1): 284-290. |
72 | Jiang J H. Promotion of PtIr and Pt catalytic activity towards ammonia electrooxidation through the modification of Zn[J]. Electrochemistry Communications, 2017, 75: 52-55. |
73 | Li Y, Pillai H S, Wang T, et al. High-performance ammonia oxidation catalysts for anion-exchange membrane direct ammonia fuel cells[J]. Energy & Environmental Science, 2021, 14(3): 1449-1460. |
74 | Hung C M. Electrochemical properties of PtPdRh alloy catalysts for ammonia electrocatalytic oxidation[J]. International Journal of Hydrogen Energy, 2012, 37(18): 13815-13821. |
75 | Lin X, Zhang X R, Wang Z, et al. Hyperbranched concave octahedron of PtIrCu nanocrystals with high-index facets for efficiently electrochemical ammonia oxidation reaction[J]. Journal of Colloid and Interface Science, 2021, 601: 1-11. |
76 | Manso R, Song L, Liang Z X, et al. CuPt and CuPtRu nanostructures for ammonia oxidation reaction[J]. ECS Transactions, 2018, 85(12): 177-182. |
10 | Xu Y M, Zheng C M, Zhang Y H. Application prospect of ammonia energy as clean energy[J]. Chemistry, 2019, 82(3): 214-220. |
11 | Zhao Y, Setzler B P, Wang J H, et al. An efficient direct ammonia fuel cell for affordable carbon-neutral transportation[J]. Joule, 2019, 3(10): 2472-2484. |
12 | Chang F, Gao W B, Guo J P, et al. Emerging materials and methods toward ammonia-based energy storage and conversion[J]. Advanced Materials, 2021, 33(50): 2005721. |
13 | Li Y, Li X, Pillai H S, et al. Ternary PtIrNi catalysts for efficient electrochemical ammonia oxidation[J]. ACS Catalysis, 2020, 10(7): 3945-3957. |
14 | 陈钰娟, 但承益, 杨耀, 等. 电催化氧化氨的研究进展[J]. 材料导报, 2012, 26(5): 129-133. |
Chen Y J, Dan C Y, Yang Y, et al. Recent progress in electrocatalytic oxidation of ammonia[J]. Materials Review, 2012, 26(5): 129-133. | |
15 | Oswin H G, Salomon M. The anodic oxidation of ammonia at platinum black electrodes in aqueous KOH electrolyte[J]. Canadian Journal of Chemistry, 1963, 41(7): 1686-1694. |
16 | Guo W H, Zhang K X, Liang Z B, et al. Electrochemical nitrogen fixation and utilization: theories, advanced catalyst materials and system design[J]. Chemical Society Reviews, 2019, 48(24): 5658-5716. |
17 | Bunce N J, Bejan D. Mechanism of electrochemical oxidation of ammonia[J]. Electrochimica Acta, 2011, 56(24): 8085-8093. |
18 | Gerischer H, Mauerer A. Untersuchungen zur anodischen oxidation von ammoniak an platin-elektroden[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1970, 25(3): 421-433. |
19 | de Vooys A C A, Koper M T M, van Santen R A, et al. The role of adsorbates in the electrochemical oxidation of ammonia on noble and transition metal electrodes[J]. Journal of Electroanalytical Chemistry, 2001, 506(2): 127-137. |
20 | Vidal-Iglesias F J, Solla-Gullón J, Pérez J M, et al. Evidence by SERS of azide anion participation in ammonia electrooxidation in alkaline medium on nanostructured Pt electrodes[J]. Electrochemistry Communications, 2006, 8(1): 102-106. |
77 | Yao K, Cheng Y F. Investigation of the electrocatalytic activity of nickel for ammonia oxidation[J]. Materials Chemistry and Physics, 2008, 108(2/3): 247-250. |
78 | Despić A R, Dražić D M, Rakin P M. Kinetics of electrochemical oxidation of ammonia in alkaline solution[J]. Electrochimica Acta, 1966, 11(8): 997-1005. |
79 | Shih Y J, Huang Y H, Huang C P. In-situ electrochemical formation of nickel oxyhydroxide (NiOOH) on metallic nickel foam electrode for the direct oxidation of ammonia in aqueous solution[J]. Electrochimica Acta, 2018, 281: 410-419. |
80 | Wang R Y, Liu H J, Zhang K, et al. Ni(Ⅱ)/Ni(Ⅲ) redox couple endows Ni foam-supported Ni2P with excellent capability for direct ammonia oxidation[J]. Chemical Engineering Journal, 2021, 404: 126795. |
81 | Fleischmann M, Korinek K, Pletcher D. The oxidation of organic compounds at a nickel anode in alkaline solution[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1971, 31(1): 39-49. |
82 | Kapałka A, Cally A, Neodo S, et al. Electrochemical behavior of ammonia at Ni/Ni(OH)2 electrode[J]. Electrochemistry Communications, 2010, 12(1): 18-21. |
83 | Allagui A, Sarfraz S, Baranova E A. Ni x Pd1- x (x = 0.98, 0.93, and 0.58) nanostructured catalysts for ammonia electrooxidation in alkaline media[J]. Electrochimica Acta, 2013, 110: 253-259. |
84 | Shih Y J, Huang Y H, Huang C P. Electrocatalytic ammonia oxidation over a nickel foam electrode: role of Ni(OH)2(s)-NiOOH(s) nanocatalysts[J]. Electrochimica Acta, 2018, 263: 261-271. |
85 | Xu W, Lan R, Du D W, et al. Directly growing hierarchical nickel-copper hydroxide nanowires on carbon fibre cloth for efficient electrooxidation of ammonia[J]. Applied Catalysis B: Environmental, 2017, 218: 470-479. |
86 | Zhang M F, Zou P M, Jeerh G, et al. Electricity generation from ammonia in landfill leachate by an alkaline membrane fuel cell based on precious-metal-free electrodes[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(34): 12817-12824. |
87 | Zhang H M, Wang Y F, Kwok Y H, et al. A direct ammonia microfluidic fuel cell using NiCu nanoparticles supported on carbon nanotubes as an electrocatalyst[J]. ChemSusChem, 2018, 11(17): 2889-2897. |
88 | He S, Chen Y F, Wang M D, et al. Metal nitride nanosheets enable highly efficient electrochemical oxidation of ammonia[J]. Nano Energy, 2021, 80: 105528. |
89 | Zott M D, Peters J C. Enhanced ammonia oxidation catalysis by a low-spin iron complex featuring cis coordination sites[J]. Journal of the American Chemical Society, 2021, 143(20): 7612-7616. |
90 | Assumpção M H M T, Piasentin R M, Hammer P, et al. Oxidation of ammonia using PtRh/C electrocatalysts: fuel cell and electrochemical evaluation[J]. Applied Catalysis B: Environmental, 2015, 174/175: 136-144. |
91 | Liu J, Chen B, Kou Y, et al. Pt-decorated highly porous flower-like Ni particles with high mass activity for ammonia electro-oxidation[J]. Journal of Materials Chemistry A, 2016, 4(28): 11060-11068. |
92 | Silva J C M, da Silva S G, de Souza R F B, et al. PtAu/C electrocatalysts as anodes for direct ammonia fuel cell[J]. Applied Catalysis A: General, 2015, 490: 133-138. |
93 | Kang Y M, Wang W, Li J M, et al. A highly efficient Pt-NiO/C electrocatalyst for ammonia electro-oxidation[J]. Journal of the Electrochemical Society, 2017, 164(9): F958-F965. |
94 | Xu W, Du D W, Lan R, et al. Electrodeposited NiCu bimetal on carbon paper as stable non-noble anode for efficient electrooxidation of ammonia[J]. Applied Catalysis B: Environmental, 2018, 237: 1101-1109. |
95 | Zhang H M, Wang Y F, Wu Z C, et al. An ammonia electrolytic cell with NiCu/C as anode catalyst for hydrogen production[J]. Energy Procedia, 2017, 142: 1539-1544. |
96 | 付凤艳, 邢广恩. 碱性燃料电池用阴离子交换膜的研究进展[J]. 化工学报, 2021, 72: 42-52. |
Fu F Y, Xing G E. Progress of polymer-based anion exchange membrane for alkaline fuel cell application[J]. CIESC Journal, 2021, 72: 42-52. | |
97 | Wang J H, Zhao Y, Setzler B P, et al. Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells[J]. Nature Energy, 2019, 4(5): 392-398. |
98 | Wang T, Zhao Y, Setzler B P, et al. Improving performance and durability of low temperature direct ammonia fuel cells: effect of backpressure and oxygen reduction catalysts[J]. Journal of the Electrochemical Society, 2021, 168(1): 014507. |
99 | Achrai B, Zhao Y, Wang T, et al. A direct ammonia fuel cell with a KOH-free anode feed generating 180 mW·cm-2 at 120℃[J]. Journal of the Electrochemical Society, 2020, 167(13): 134518. |
100 | Lan R, Tao S W. Direct ammonia alkaline anion-exchange membrane fuel cells[J]. Electrochemical and Solid-State Letters, 2010, 13(8): B83. |
101 | Gottesfeld S. The direct ammonia fuel cell and a common pattern of electrocatalytic processes[J]. Journal of the Electrochemical Society, 2018, 165(15): J3405-J3412. |
102 | Lee K R, Song D S, Park S B, et al. A direct ammonium carbonate fuel cell with an anion exchange membrane[J]. RSC Advances, 2014, 4(11): 5638. |
103 | Siddiqui O, Dincer I. Investigation of a new anion exchange membrane-based direct ammonia fuel cell system[J]. Fuel Cells, 2018, 18(4): 379-388. |
104 | Ishiyama S, Rosero-Navarro N C, Miura A, et al. Mg-Al layered double hydroxide as an electrolyte membrane for aqueous ammonia fuel cell[J]. Materials Research Bulletin, 2019, 119: 110561. |
105 | Zou P M, Chen S G, Lan R, et al. Investigation of perovskite oxide SrCo0.8Cu0.1Nb0.1O3- δ as a cathode material for room temperature direct ammonia fuel cells[J]. ChemSusChem, 2019, 12(12): 2788-2794. |
106 | Suzuki S, Muroyama H, Matsui T, et al. Fundamental studies on direct ammonia fuel cell employing anion exchange membrane[J]. Journal of Power Sources, 2012, 208: 257-262. |
107 | Wang T, Zhao Y, Setzler B P, et al. A high-performance 75 W direct ammonia fuel cell stack[J]. Cell Reports Physical Science, 2022, 3(4): 100829. |
21 | Rosca V, Koper M T M. Electrocatalytic oxidation of ammonia on Pt(111) and Pt(100) surfaces[J]. Physical Chemistry Chemical Physics: PCCP, 2006, 8(21): 2513-2524. |
22 | Matsui T, Suzuki S, Katayama Y, et al. In situ attenuated total reflection infrared spectroscopy on electrochemical ammonia oxidation over Pt electrode in alkaline aqueous solutions[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2015, 31(42): 11717-11723. |
23 | Ye J Y, Lin J L, Zhou Z Y, et al. Ammonia electrooxidation on dendritic Pt nanostructures in alkaline solutions investigated by in situ FTIR spectroscopy and online electrochemical mass spectroscopy[J]. Journal of Electroanalytical Chemistry, 2018, 819: 495-501. |
24 | Skachkov D, Venkateswara Rao C, Ishikawa Y. Combined first-principles molecular dynamics/density functional theory study of ammonia electrooxidation on Pt(100) electrode[J]. The Journal of Physical Chemistry C, 2013, 117(48): 25451-25466. |
25 | Herron J A, Ferrin P, Mavrikakis M. Electrocatalytic oxidation of ammonia on transition-metal surfaces: a first-principles study[J]. The Journal of Physical Chemistry C, 2015, 119(26): 14692-14701. |
26 | Diaz L A, Botte G G. Mathematical modeling of ammonia electrooxidation kinetics in a polycrystalline Pt rotating disk electrode[J]. Electrochimica Acta, 2015, 179: 519-528. |
27 | de Vooys A C A, Mrozek M F, Koper M T M, et al. The nature of chemisorbates formed from ammonia on gold and palladium electrodes as discerned from surface-enhanced Raman spectroscopy[J]. Electrochemistry Communications, 2001, 3(6): 293-298. |
28 | Katayama Y, Okanishi T, Muroyama H, et al. Enhanced supply of hydroxyl species in CeO2-modified platinum catalyst studied by in situ ATR-FTIR spectroscopy[J]. ACS Catalysis, 2016, 6(3): 2026-2034. |
29 | Vidal-Iglesias F J, Solla-Gullón J, Feliu J M, et al. DEMS study of ammonia oxidation on platinum basal planes[J]. Journal of Electroanalytical Chemistry, 2006, 588(2): 331-338. |
[1] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[2] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[3] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[4] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[5] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[6] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[7] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[8] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[9] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[10] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[11] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[12] | Chen WANG, Xiufeng SHI, Xianfeng WU, Fangjia WEI, Haohong ZHANG, Yin CHE, Xu WU. Preparation of Mn3O4 catalyst by redox method and study on its catalytic oxidation performance and mechanism of toluene [J]. CIESC Journal, 2023, 74(6): 2447-2457. |
[13] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[14] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
[15] | Xiqing ZHANG, Yanting WANG, Yanhong XU, Shuling CHANG, Tingting SUN, Ding XUE, Lihong ZHANG. Effect of Mg content on isobutane dehydrogenation properties over nanosheets supported Pt-In catalysts [J]. CIESC Journal, 2023, 74(6): 2427-2435. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||