1 |
庞丽萍, 邹凌宇, 阿嵘, 等. 高速运载器燃油热管理系统优化[J]. 北京航空航天大学学报, 2019, 45(2): 252-258.
|
|
Pang L P, Zou L Y, A R, et al. Optimization of fuel heat management system for high-speed aircraft [J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(2): 252-258.
|
2 |
张绍芳, 叶蕾. 国外高超声速飞行器及技术发展综述[J]. 中国航天, 2016, (12): 16-20.
|
|
Zhang S F, Ye L. A review of the development of foreign hypersonic vehicles and technologies [J]. Aerospace China, 2016, (12): 16-20.
|
3 |
Yin H S, Shen X, Huang Y. Modeling dynamic responses of aircraft environmental control systems by coupling with cabin thermal environment simulations [J]. Building Simulation, 2016, 9(4): 459-468.
|
4 |
Jeffrey F, Philip O, Michael G, et al. Challenges and opportunities for electric aircraft thermal management [J]. Aircraft Engineering & Aerospace Technology, 2014, 86(6): 519-524.
|
5 |
Yu S, Ganev E. Next generation power and thermal management system [J]. SAE International Journal of Aerospace, 2009, 1(1): 1107-1121.
|
6 |
Roskilly A P, Yan J. Sustainable thermal energy management [J]. Energy Conversion and Management, 2018, 159: 396-397.
|
7 |
Doman D B. Optimal cruise altitude for aircraft thermal management [J]. Journal of Guidance Control and Dynamics, 2015, 38: 2084-2095.
|
8 |
Howard C E. Thermal management a challenge for designers of future military aircraft [J]. Military and Aerospace Electronics, 2008, 19(4): 12.
|
9 |
Yu X, Mao Y. Research and simulation of hypersonic aircraft thermal management system and its control model [J]. Journal of Aerospace Power, 2018, 33: 741-751.
|
10 |
寿荣中, 何慧珊. 飞行器环境控制[M]. 北京: 北京航空航天大学出版社, 2004: 143-198.
|
|
Shou R Z, He H S, Aircraft Environmental Control [M]. Beijing: Beihang University Press, 2004: 143-198.
|
11 |
曾庆华. 飞行控制器的多学科综合环境研究[J]. 航空计算技术, 2002, (4): 65-68.
|
|
Zeng Q H. The multidisciplinary synthesis environment research of flight controller's design [J]. Aeronautical Computer Technique, 2002, (4): 65-68.
|
12 |
祁成武, 尹本浩, 王延, 等 基于压缩制冷的便携式特种电子设备冷却系统[J]. 制冷学报, 2017, 38(1): 95-99.
|
|
Qi C W, Yin B H, Wang Y, et al. A portable cooling system based on compression refrigeration [J]. Journal of Refrigeration2017, 38(1): 95-99.
|
13 |
牟笑迎, 吴玉庭, 马重芳. 蒸气压缩制冷在高热流电子器件冷却中的应用[J]. 制冷与空调, 2009, 9(5) : 5-9.
|
|
Mu X Y, Wu Y T, Ma C F. Application of vapor compression refrigeration to high heat flux microelectronics cooling [J]. Refrigeration and Air-Conditioning, 2009, 9(5): 5-9.
|
14 |
郝毓雅, 王婕. 飞机燃油热管理系统分析[J]. 现代机械, 2015, (3): 77-82.
|
|
Hao Y Y, Wang J. The analysis of aircraft fuel thermal management system [J]. Modern Machinery, 2015, (3): 77-82.
|
15 |
Gabriele H. Refrigerants for mobile air conditioning [J]. ATZ Worldwide, 2017, 119: 16-21.
|
16 |
Aized T, Hamza A. Thermodynamic analysis of various refrigerants for automotive air conditioning system [J]. Arabian Journal for Science and Engineering, 2019, 44: 1697-1707.
|
17 |
袁美名, 常士楠, 洪海华, 等. 飞机机载综合热管理系统仿真研究[J]. 航空科学技术, 2008, (4): 30-34.
|
|
Yuan M M, Chang S N, Hong H H, et al. Simulation of aircraft integrated thermal management system [J]. Aeronautical Science and Technology, 2008, (4): 30-34.
|
18 |
Dreepaul R K. A study of alternative refrigerants for the refrigeration and air conditioning sector in Mauritius [J]. IOP Conference Series: Earth and Environmental Science, 2017, 93: 012054.
|
19 |
Evgeni G. High-reactance permanent magnet machine for high-performance power generation systems [J]. SAE Transactions, 2006, 115: 888-897.
|
20 |
Mahefkey T, Yerkes K, Donovan B, et al. Thermal management challenges for future military aircraft power systems [J]. SAE Transactions, 2004, 113: 1965-1973.
|
21 |
Maiorano L P, Molina J M. Challenging thermal management by incorporation of graphite into aluminium foams [J]. Materials & Design, 2018, 158: 160-171.
|
22 |
Iqbal M A, Macha N K, Danesh W, et al. Thermal management challenges and mitigation techniques for transistor-level 3-D integration [J]. Microelectronics Journal, 2019, 91: 61-69.
|
23 |
徐伟, 田会峰, 常徐. 基于飞行器的环境监测系统设计[J]. 自动化与仪器仪表, 2019, (5): 7-9.
|
|
Xu W, Tian H F, Chang X. Design of environmental monitoring system based on aircraft [J]. Automation & Instrumentation, 2019, (5): 7-9.
|
24 |
汪琳阁, 罗贵友, 沙连帅, 等. 基于四旋翼飞行器的环境参数监测系统[J]. 中国战略新兴产业, 2018, (16): 153.
|
|
Wang L G, Luo G Y, Sha L S, et al. Environmental parameter monitoring system based on quadrotor [J]. China s Strategic Emerging Industries, 2018, (16): 153.
|
25 |
Raman K S, Saif N A, Neeraj P, et al. Waste heat energy utilization in refrigeration and air-conditioning [J]. Complex Adaptive Systems, 2016, 95: 507-515.
|
26 |
王文龙, 王伟. 下一代战斗机综合环境控制/热管理系统开发现状[J]. 飞机设计, 2004, (1): 74-76.
|
|
Wang W L, Wang W. Development of integrated environmental control system/thermal management system (IECS/TMS) for next generation fighter aircraft [J]. Aircraft Design, 2004, (1): 74-76.
|
27 |
Phelan P E, Chiriac V, Lee T Y T. Current and future miniature refrigeration cooling technologies for high power microelectronics [J]. IEEE Transactions on Components and Packaging Technologies, 2002, 25(3): 356-365.
|
28 |
Allan J O. The miniature, reversed Stirling cycle cryo-cooler: integrated simulation of performance [J]. Cryogenics, 1999, 39(3): 253-266.
|
29 |
Peter J S, Ray R. Development and experimental test of an analytical model of the orifice pulse tube refrigerator [J]. Advances in Cryogenic Engineering, 1988, 33: 851-859.
|
30 |
Ganev E, Koerner M. Power and thermal management for future aircraft [C]// SAE 2013 AeroTech Congress & Exhibition. SAE International, 2013: 2273.
|