CIESC Journal ›› 2021, Vol. 72 ›› Issue (9): 4950-4960.DOI: 10.11949/0438-1157.20210007
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Shaoling CONG1,2(),Jie ZHAO2,Yufei YANG2,3,Changqing WU2,Fan HE2,Hua YUAN2,Xiaoqin WANG1,2(),Shanxin XIONG1,2,Yan WU1,Anning ZHOU1,2
Received:
2021-01-04
Revised:
2021-05-27
Online:
2021-09-05
Published:
2021-09-05
Contact:
Xiaoqin WANG
从少领1,2(),赵捷2,杨玉飞2,3,吴长清2,贺凡2,袁华2,汪晓芹1,2(),熊善新1,2,吴燕1,周安宁1,2
通讯作者:
汪晓芹
作者简介:
从少领(1996—),女,硕士研究生,基金资助:
CLC Number:
Shaoling CONG, Jie ZHAO, Yufei YANG, Changqing WU, Fan HE, Hua YUAN, Xiaoqin WANG, Shanxin XIONG, Yan WU, Anning ZHOU. Synthesis of N-doped carbon micro-nanotubes using coal-based polyaniline as a carbon and nitrogen source[J]. CIESC Journal, 2021, 72(9): 4950-4960.
从少领, 赵捷, 杨玉飞, 吴长清, 贺凡, 袁华, 汪晓芹, 熊善新, 吴燕, 周安宁. 煤基聚苯胺制掺N碳微纳米管的实验研究[J]. 化工学报, 2021, 72(9): 4950-4960.
Add to citation manager EndNote|Ris|BibTeX
生长 催化剂 | NCMNT | ||
---|---|---|---|
掺N量/ %(质量) | 收率 (碳管/生长催化剂/煤基聚苯胺的质量比) | 形态特征 | |
二茂镍 | 0.68 | 9.28/1/160 | 微米管和纳米管均较多;微米管大多为直立管,管径可达400 nm,壁厚约30 nm;纳米管大多为弯曲管,管径约60 nm,壁厚约10 nm;碳管中嵌有单质镍粒子。伴有竹节状管、糖葫芦串状碳 |
乙酸镍 | 1.17 | 9.36/1/160 | 管径在10~200 nm,以30~80 nm的纳米弯曲管居多,粗细较均匀;伴有竹节状管、糖葫芦串状碳 |
二茂铁 | 0.51 | 1.06/1/5 | 管径分布在23~128 nm,以35~75 nm的纳米管为主,壁厚约10 nm |
Table 1 The N-doping contents, yields and morphological features of carbon micro-nanotubes grown on three organometallic catalysts
生长 催化剂 | NCMNT | ||
---|---|---|---|
掺N量/ %(质量) | 收率 (碳管/生长催化剂/煤基聚苯胺的质量比) | 形态特征 | |
二茂镍 | 0.68 | 9.28/1/160 | 微米管和纳米管均较多;微米管大多为直立管,管径可达400 nm,壁厚约30 nm;纳米管大多为弯曲管,管径约60 nm,壁厚约10 nm;碳管中嵌有单质镍粒子。伴有竹节状管、糖葫芦串状碳 |
乙酸镍 | 1.17 | 9.36/1/160 | 管径在10~200 nm,以30~80 nm的纳米弯曲管居多,粗细较均匀;伴有竹节状管、糖葫芦串状碳 |
二茂铁 | 0.51 | 1.06/1/5 | 管径分布在23~128 nm,以35~75 nm的纳米管为主,壁厚约10 nm |
1 | Liu J H, Wu S Q, He C X, et al. Structure, property and application of carbon nanotubes and carbon microtubes[J]. Journal of Shenzhen University Science and Engineering, 2013, 30(1): 1-11. |
2 | Journet C, Maser W K, Bernier P, et al. Large-scale production of single-walled carbon nanotubes by the electric-arc technique[J]. Nature, 1997, 388(6644): 756-758. |
3 | 李振涛, 董强, 刘红, 等. 以太西无烟煤为碳源制备单壁碳纳米管[J]. 化工学报, 2010, 61(4): 1040-1046. |
Li Z T, Dong Q, Liu H, et al. Preparation and characterization of single-walled carbon nanotubes from Taixi anthracite[J]. CIESC Journal, 2010, 61(4): 1040-1046. | |
4 | Li Y F, Qiu J S, Zhao Z B, et al. Bamboo-shaped carbon tubes from coal[J]. Chemical Physics Letters, 2002, 366(5/6): 544-550. |
5 | 邱介山, 韩红梅, 周颖, 等. 由二种烟煤制备碳纳米管的探索性研究[J]. 新型炭材料, 2001, 16(4): 1-6. |
Qiu J S, Han H M, Zhou Y, et al. Carbon nanotubes from two bituminous coals[J]. New Carbon Materials, 2001, 16(4): 1-6. | |
6 | 赵宗彬, 邱介山, 王同华, 等. 以煤为碳源直流电弧法制备单壁纳米碳管绳[J]. 新型炭材料, 2006, 21(1): 19-23. |
Zhao Z B, Qiu J S, Wang T H, et al. Fabrication of single-walled carbon nanotube ropes from coal by an arc discharge method[J]. New Carbon Materials, 2006, 21(1): 19-23. | |
7 | Calderon Moreno J M, Yoshimura M. Hydrothermal processing of high-quality multiwall nanotubes from amorphous carbon[J]. Journal of the American Chemical Society, 2001, 123(4): 741-742. |
8 | Kumar M, Ando Y. Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production[J]. Journal of Nanoscience and Nanotechnology, 2010, 10(6): 3739-3758. |
9 | Wen G W, Yu H M, Huang X X. Synthesis of carbon microtube buckypaper by a gas pressure enhanced chemical vapor deposition method[J]. Carbon, 2011, 49(12): 4067-4069. |
10 | Ikegami T, Nakanishi F, Uchiyama M, et al. Optical measurement in carbon nanotubes formation by pulsed laser ablation[J]. Thin Solid Films, 2004, 457(1): 7-11. |
11 | Ghosh P, Afre R A, Soga T, et al. A simple method of producing single-walled carbon nanotubes from a natural precursor: eucalyptus oil[J]. Materials Letters, 2007, 61(17): 3768-3770. |
12 | Liu Q, Liu W, Cui Z M, et al. Synthesis and characterization of 3D double branched K junction carbon nanotubes and nanorods[J]. Carbon, 2007, 45(2): 268-273. |
13 | Jang J W, Lee C E, Lyu S C, et al. Structural study of nitrogen-doping effects in bamboo-shaped multiwalled carbon nanotubes[J]. Applied Physics Letters, 2004, 84(15): 2877-2879. |
14 | Qiu J S, An Y L, Zhao Z B, et al. Catalytic synthesis of single-walled carbon nanotubes from coal gas by chemical vapor deposition method[J]. Fuel Processing Technology, 2004, 85(8/9/10): 913-920. |
15 | Awasthi S, Awasthi K, Ghosh A K, et al. Formation of single and multi-walled carbon nanotubes and graphene from Indian bituminous coal[J]. Fuel, 2015, 147: 35-42. |
16 | Ren Z F, Huang Z P, Xu J W, et al. Synthesis of large arrays of well-aligned carbon nanotubes on glass[J]. Science, 1998, 282(5391): 1105-1107. |
17 | 吴霞, 王鲁香, 刘浪, 等. 新疆煤基碳纳米管的调控制备[J]. 无机化学学报, 2013, 29(9): 1842-1848. |
Wu X, Wang L X, Liu L, et al. Controllable preparation of carbon nanotubes from Xinjiang coal[J]. Chinese Journal of Inorganic Chemistry, 2013, 29(9): 1842-1848. | |
18 | Wang X F, Liu X Q, Lai L F, et al. Syntheses, properties and electrochemical activity of carbon microtubes modified with amino groups[J]. Advanced Functional Materials, 2008, 18(12): 1809-1823. |
19 | Libera J, Gogotsi Y. Hydrothermal synthesis of graphite tubes using Ni catalyst[J]. Carbon, 2001, 39(9): 1307-1318. |
20 | 于洪明. 碳微米管的合成及其性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2011. |
Yu H M. Synthesis and properties of carbon microtubes[D]. Harbin: Harbin Institute of Technology, 2011. | |
21 | Li L X, Liu Y C, Geng X, et al. Synthesis and electrochemical performance of nitrogen-doped carbon nanotubes[J]. Acta Physico-Chimica Sinica, 2011, 27(2): 443-448. |
22 | Zhao G Q, Tang Y L, Wan G P, et al. High-performance and flexible all-solid-state hybrid supercapacitor constructed by NiCoP/CNT and N-doped carbon coated CNT nanoarrays[J]. Journal of Colloid and Interface Science, 2020, 572: 151-159. |
23 | Wang X Q, Li Q Q, Zhang Y, et al. Synthesis and capacitance properties of N-doped porous carbon/NiO nanosheet composites using coal-based polyaniline as carbon and nitrogen source[J]. Applied Surface Science, 2018, 442: 565-574. |
24 | Wu B H, Zhu J J, Li X, et al. PtRu nanoparticles supported on p-phenylenediamine-functionalized multiwalled carbon nanotubes: enhanced activity and stability for methanol oxidation[J]. Ionics, 2019, 25(1): 181-189. |
25 | Su D S, Chen X W, Liu X, et al. Mount-etna-lava-supported nanocarbons for oxidative dehydrogenation reactions[J]. Advanced Materials, 2008, 20(19): 3597-3600. |
26 | Lin J, Yang Y H, Zhang H A, et al. Optimization of CNTs growth on TiB2-based composite powders by CVD with Fe as catalyst[J]. Ceramics International, 2020, 46(3): 3837-3843. |
27 | Lin J, Yang Y H, Zhang H A, et al. Preparation of CNT-Co@TiB2 by catalytic CVD: effects of synthesis temperature and growth time[J]. Diamond and Related Materials, 2020, 106: 107830. |
28 | Escobar M, Rubiolo G, Candal R, et al. Effect of catalyst preparation on the yield of carbon nanotube growth[J]. Physica B: Condensed Matter, 2009, 404(18): 2795-2798. |
29 | Paraknowitsch J P, Thomas A, Antonietti M. A detailed view on the polycondensation of ionic liquid monomers towards nitrogen doped carbon materials[J]. Journal of Materials Chemistry, 2010, 20(32): 6746. |
30 | Ashok A, Kumar A, Ponraj J, et al. Synthesis and growth mechanism of bamboo like N-doped CNT/graphene nanostructure incorporated with hybrid metal nanoparticles for overall water splitting[J]. Carbon, 2020, 170: 452-463. |
31 | Deng H J, Li Q, Liu J J, et al. Active sites for oxygen reduction reaction on nitrogen-doped carbon nanotubes derived from polyaniline[J]. Carbon, 2017, 112: 219-229. |
32 | 丁佩. 碳氮纳米管的制备、表征及场致电子发射特性研究[D]. 郑州: 郑州大学, 2003. |
Ding P. Preparation, characterization and field electron emission properties of CNx nanotubes[D]. Zhengzhou: Zhengzhou University, 2003. | |
33 | 杨永哲. 掺氮碳纳米管的制备及其催化硝基苯加氢性能研究[D]. 湘潭: 湘潭大学, 2018. |
Yang Y Z. Nitrogen-doped carbon nanotubes preparation and their catalytic performance in nitrobenzene hydrogenation reaction[D]. Xiangtan: Xiangtan University, 2018. | |
34 | Yin X F, He L M, Syed-Hassan S S A, et al. One-step preparation of a N-CNTs@Ni foam electrode material with the co-production of H2 by catalytic reforming of N-containing compound of biomass tar[J]. Fuel, 2020, 280: 118601. |
35 | Ha Y, Shi L X, Yan X X, et al. Multifunctional electrocatalysis on a porous N-doped NiCo2O4@C nanonetwork[J]. ACS Applied Materials & Interfaces, 2019, 11(49): 45546-45553. |
36 | Arrigo R, Hävecker M, Schlögl R, et al. Dynamic surface rearrangement and thermal stability of nitrogen functional groups on carbon nanotubes[J]. Chemical Communications, 2008, (40): 4891-4893. |
37 | Baker R T K. Catalytic growth of carbon filaments[J]. Carbon, 1989, 27(3): 315-323. |
38 | Kunadian I, Andrews R, Qian D L, et al. Growth kinetics of MWCNTs synthesized by a continuous-feed CVD method[J]. Carbon, 2009, 47(2): 384-395. |
39 | Zhu C Y, Xie Z L, Guo K M. Growth mechanism of carbon nanotubes in floating catalyst system[J]. Journal of Functional Materials, 2005, 36(11): 1789-1793, 1797. |
[1] | Xin WU, Jianying GONG, Long JIN, Yutao WANG, Ruining HUANG. Study on the transportation characteristics of droplets on the aluminium surface under ultrasonic excitation [J]. CIESC Journal, 2023, 74(S1): 104-112. |
[2] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[3] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[4] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[5] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[6] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[7] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[8] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[9] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[10] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[11] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[12] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[13] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[14] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[15] | Chao KANG, Jinpeng QIAO, Shengchao YANG, Chao PENG, Yuanpeng FU, Bin LIU, Jianrong LIU, Aleksandrova TATIANA, Chenlong DUAN. Research progress on activation extraction of valuable metals in coal gangue [J]. CIESC Journal, 2023, 74(7): 2783-2799. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||