CIESC Journal ›› 2020, Vol. 71 ›› Issue (8): 3565-3574.DOI: 10.11949/0438-1157.20200350
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Guoda HE1,2,3(),Rui TANG1,2(),Xuezhi DUAN4,Leidong XIE1,Jie FU1,2,Jianxing DAI1,Yuan QIAN1,2,Jianqiang WANG1,2,5
Received:
2020-04-03
Revised:
2020-05-13
Online:
2020-08-05
Published:
2020-08-05
Contact:
Rui TANG
贺国达1,2,3(),汤睿1,2(),段学志4,谢雷东1,傅杰1,2,戴建兴1,钱渊1,2,王建强1,2,5
通讯作者:
汤睿
作者简介:
贺国达(1994—),男,硕士研究生,基金资助:
CLC Number:
Guoda HE, Rui TANG, Xuezhi DUAN, Leidong XIE, Jie FU, Jianxing DAI, Yuan QIAN, Jianqiang WANG. Molecular dynamics investigation on microstructure and diffusion properties of LiF-BeF2 molten salt[J]. CIESC Journal, 2020, 71(8): 3565-3574.
贺国达, 汤睿, 段学志, 谢雷东, 傅杰, 戴建兴, 钱渊, 王建强. LiF-BeF2熔盐微观结构及扩散特性的分子动力学研究[J]. 化工学报, 2020, 71(8): 3565-3574.
Add to citation manager EndNote|Ris|BibTeX
离子对 | 第一峰半径/? | 配位数 | ||
---|---|---|---|---|
FPMD | 文献结果 | FPMD | 文献结果 | |
Be-F | 1.58 | 1.58① | 4 | 4① |
Li-F | 1.86 | 1.85① | 4.6 | 4① |
F-F | 2.61 | 2.56~3.02① | 12.7 | 8① |
Be-Be | 2.98 | 3.03② | 0.9 | 0.9② |
Be-Li | 3.06 | 3.07② | 7.6 | 6.9② |
Li-Li | 3.10 | 3.05② | 5.8 | 5.4② |
Table 1 The average coordination number and the first peak radius of each ion pairs
离子对 | 第一峰半径/? | 配位数 | ||
---|---|---|---|---|
FPMD | 文献结果 | FPMD | 文献结果 | |
Be-F | 1.58 | 1.58① | 4 | 4① |
Li-F | 1.86 | 1.85① | 4.6 | 4① |
F-F | 2.61 | 2.56~3.02① | 12.7 | 8① |
Be-Be | 2.98 | 3.03② | 0.9 | 0.9② |
Be-Li | 3.06 | 3.07② | 7.6 | 6.9② |
Li-Li | 3.10 | 3.05② | 5.8 | 5.4② |
温度/K | 数量百分比/% | |||
---|---|---|---|---|
游离F-/F- | 游离BeF3-/Be2+ | 游离BeF42-/Be2+ | 游离Li+/Li+ | |
773 | 10.09 | 3.00 | 15.00 | 36.67 |
873 | 10.27 | 3.67 | 16.67 | 39.07 |
973 | 10.42 | 4.67 | 17.67 | 40.83 |
Table 2 Percentage of various free structures in the simulation system
温度/K | 数量百分比/% | |||
---|---|---|---|---|
游离F-/F- | 游离BeF3-/Be2+ | 游离BeF42-/Be2+ | 游离Li+/Li+ | |
773 | 10.09 | 3.00 | 15.00 | 36.67 |
873 | 10.27 | 3.67 | 16.67 | 39.07 |
973 | 10.42 | 4.67 | 17.67 | 40.83 |
离子 | Arrhenius常数A/K | 扩散活化能Ea/kJ/mol |
---|---|---|
F- | 1.52×10-6 | 41.98 |
Li+ | 4.00×10-7 | 27.40 |
Be2+ | 2.26×10-6 | 45.21 |
BeF3- | 1.33×10-6 | 40.66 |
BeF42- | 1.91×10-6 | 43.72 |
Table 3 The coefficient of Eq. (7)
离子 | Arrhenius常数A/K | 扩散活化能Ea/kJ/mol |
---|---|---|
F- | 1.52×10-6 | 41.98 |
Li+ | 4.00×10-7 | 27.40 |
Be2+ | 2.26×10-6 | 45.21 |
BeF3- | 1.33×10-6 | 40.66 |
BeF42- | 1.91×10-6 | 43.72 |
1 | 蔡翔舟, 戴志敏, 徐洪杰. 钍基熔盐堆核能系统[J]. 物理, 2016, 45(9): 578-590. |
Cai X Z, Dai Z M, Xu H J. Thorium molten salt reactor nuclear energy system[J]. Physics, 2016, 45(9): 578-590. | |
2 | Rosenthal M W, Briggs R B, Kasten P R. Molten salt reactor program semiannual progress report (ORNL-4449)[R]. USA: Oak Ridge National Laboratory, 1969. |
3 | Williams D F, Toth L M, Clarno K T. Assessment of candidate molten salt coolants for the advanced high-temperature reactor (ORNL/TM-2006/12)[R]. USA: Oak Ridge National Laboratory, 2006. |
4 | Forsberg C W, Peterson P F, Pickard P S. Molten-salt-cooled advanced high-temperature reactor for production of hydrogen and electricity[J]. Nuclear Technology, 2003, 144(3): 289-302. |
5 | Hargraves R, Moir R. Liquid fluoride thorium reactors: an old idea in nuclear power gets reexamined[J]. American Scientist, 2010, 98(4): 304-313. |
6 | Petti D A, Smolik G R, Simpson M F, et al. JUPITER-Ⅱ molten salt Flibe research: an update on tritium, mobilization and redox chemistry experiments[J]. Fusion Engineering and Design, 2006, 81(8-14): 1439-1449. |
7 | 曾友石, 杜林, 皮力, 等. 氢在FLiNaK(LiF-NaF-KF)熔盐中的渗透行为[J]. 核技术, 2015, 38(2): 73-78. |
Zeng Y S, Du L, Pi L, et al. Hydrogen permeation behavior in FLiNaK(LiF-NaF-KF) molten salt[J]. Nuclear Techniques, 2015, 38(2): 73-78. | |
8 | Calderoni P, Sharpe P, Hara M, et al. Measurement of tritium permeation in Flibe (2LiF-BeF2)[J]. Fusion Engineering & Design, 2008, 83(7): 1331-1334. |
9 | Anderl R A, Fukada S, Smolik G R, et al. Deuterium\tritium behavior in Flibe and Flibe-facing materials[J]. Journal of Nuclear Materials, 2004, 329(part B): 1327-1331. |
10 | Mathews A L, Baes C F. Oxide chemistry and thermodynamics of molten lithium fluoride-beryllium fluoride solutions[J]. Inorganic Chemistry, 1968, 7(2): 373-382. |
11 | Iwamoto N, Tsunawaki Y, Umesaki N, et al. Self diffusion of lithium in molten LiBeF3 and Li2BeF4[J]. Journal of the Chemical Society Faraday Transactions, 1979, 75(9): 1277-1283. |
12 | Ohmichi T, Ohno H, Furukawa K. Self-diffusion of fluorine in molten dilithium tetrafluoroberyllate[J]. The Journal of Physical Chemistry, 1976, 80(14): 1628-1631. |
13 | Robbins G D, Braunstein J. Molten salt reactor program semiannual progress report for period ending february 29(ORNL-4254)[R]. USA: Oak Ridge National Laboratory, 1968. |
14 | 朱宇, 陆小华, 丁皓, 等. 分子模拟在化工应用中的若干问题及思考[J]. 化工学报, 2004, 55(8): 1213-1223. |
Zhu Y, Lu X H, Ding H, et al. Molecular simulation in chemical engineering[J]. Journal of Chemical Industry and Engineering (China), 2004, 55(8): 1213-1223. | |
15 | Rahman A. Structure and motion in liquid BeF2, LiBeF3, and LiF from molecular dynamics calculations[J]. Journal of Chemical Physics, 1972, 57(7): 3010. |
16 | Heaton R, Brooks R, Madden P, et al. A first-principles description of liquid BeF2 and its mixtures with LiF: potential development and pure BeF[J]. Journal of Physical Chemistry B, 2006, 110(23): 11454-11460. |
17 | Salanne M, Simon C, Turq P, et al. A first-principles description of liquid BeF2 and its mixtures with LiF2: network formation in LiF-BeF2[J]. The Journal of Physical Chemistry B, 2006, 110(23): 11461-11467. |
18 | Wilson M, Madden P A. Polarization effects in ionic systems from first principles[J]. Journal of Physics Condensed Matter, 1993, 5(17): 2687-2706. |
19 | Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2717-2744. |
20 | Nam H O, Bengtson A, Vortler K, et al. First-principles molecular dynamics modeling of the molten fluoride salt with Cr solute[J]. Journal of Nuclear Materials, 2014, 449(1/2/3): 148-157. |
21 | 宁汇, 侯民强, 杨德重. 二元混合离子液体的电导率与离子间的缔合作用[J]. 物理化学学报, 2013, 29(10): 2107-2113. |
Ning H, Hou M Q, Yang D Z. Ionic association in binary ionic liquids by conductivity[J]. Acta Physico-Chimica Sinica, 2013, 29(10): 2107-2113. | |
22 | Klix A, Suzuki A, Terai T. Study of tritium migration in liquid Li2BeF4 with ab initio molecular dynamics[J]. Fusion Engineering and Design, 2006, 81(1-7): 713-717. |
23 | Becke A D P. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Physical Review A, 1988, 38(6): 3098-3100. |
24 | Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B: Condensed Matter, 1988, 37(2): 785-789. |
25 | Krack M. Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals[J]. Theoretical Chemistry Accounts, 2005, 114(1/2/3): 145-152. |
26 | Hartwigsen C, Goedecker S, Hutter J. Relativistic separable dual-space Gaussian pseudopotentials from H to Rn[J]. Physical Review B, 1998, 58(7): 3641-3662. |
27 | Goedecker S, Teter M, Hutter J. Separable dual-space Gaussian pseudopotentials[J]. Physical Review B, 1996, 54(3): 1703-1710. |
28 | Car R. Unified approach for molecular dynamics and density functional theory[J]. Physical Review Letters, 1985, 55(22): 2471-2474. |
29 | Dai J X, Han H, Li Q N, et al. First-principle investigation of the structure and vibrational spectra of the local structures in LiF-BeF2 molten salts[J]. Journal of Molecular Liquids, 2016, 213: 17-22. |
30 | Kleinman L, Bylander D M. Efficacious form for model pseudopotentials[J]. Physical Review Letters, 1982, 48(20): 1425-1428. |
31 | Chadi D J. Special points for brillouin-zone integrations[J]. Physical Review B, 1977, 16(4): 1746-1747. |
32 | Nose S. A unified formulation of the constant temperature molecular dynamics methods[J]. The Journal of Chemical Physics, 1984, 8(1): 511-519. |
33 | Zhang Q R, Han Y, Wu L C. Influence of electrostatic field on the adsorption of phenol on single-walled carbon nanotubes a study by molecular dynamics simulation[J]. Chemical Engineering Journal, 2019, 363: 278-284. |
34 | Madden P A, Salanne M, Corradini D. Coordination numbers and physical properties in molten salts and their mixtures[J]. Faraday Discussions, 2016, 190: 471-486. |
35 | Pauvert O, Salanne M, Zanghi D, et al. Ion specific effects on the structure of molten AF-ZrF4 systems (A+ = Li+, Na+, and K+ )[J]. The Journal of Physical Chemistry B, 2011, 115(29): 9160-9167. |
36 | Rabani E, Gezelter J D, Berne B J. Calculating the hopping rate for self-diffusion on rough potential energy surfaces: cage correlations[J]. The Journal of Chemical Physics, 1997, 107(17): 6867-6876. |
37 | 阎建民, 罗先金, Krishna R. 非电解质溶液扩散系数的理论研究评述[J]. 化工学报, 2006, 57(10): 2263-2269. |
Yan J M, Luo X J, Krishna R. Review on theoretical calculation of diffusion coefficients in non-electrolytic solutions[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(10): 2263-2269. | |
38 | Burrell G L, Burgar I M, Gong Q, et al. NMR relaxation and self-diffusion study at high and low magnetic fields of ionic association in protic ionic liquids[J]. Journal of Physical Chemistry B, 2010, 114(35): 11436-11443. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Lisen BI, Bin LIU, Hengxiang HU, Tao ZENG, Zhuorui LI, Jianfei SONG, Hanming WU. Molecular dynamics study on evaporation modes of nanodroplets at rough interfaces [J]. CIESC Journal, 2023, 74(S1): 172-178. |
[3] | Hongxin YU, Shuangquan SHAO. Simulation analysis of water crystallization process [J]. CIESC Journal, 2023, 74(S1): 250-258. |
[4] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[5] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[6] | Chunyu LIU, Huanyu ZHOU, Yue MA, Changtao YUE. Drying characteristics and mathematical model of CaO-conditioned oil sludge [J]. CIESC Journal, 2023, 74(7): 3018-3027. |
[7] | Zhen LONG, Jinhang WANG, Junjie REN, Yong HE, Xuebing ZHOU, Deqing LIANG. Experimental study on inhibition effect of natural gas hydrate formation by mixing ionic liquid with PVCap [J]. CIESC Journal, 2023, 74(6): 2639-2646. |
[8] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
[9] | Kunyang FAN, Jingxing YANG, Haibo XU, Xingrong LIAN, Fengmei HE, Conghui CHEN, Zengyao LI. A unified lattice Boltzmann model for heat transfer in opacifiers-doped silica aerogel [J]. CIESC Journal, 2023, 74(5): 1974-1981. |
[10] | Yongquan ZHANG, Weiwei XUAN. Mechanism of alkali metal/(FeO+CaO+MgO) influence on the structure and viscosity of silicate ash slag [J]. CIESC Journal, 2023, 74(4): 1764-1771. |
[11] | Xiangning HU, Yuanbo YIN, Chen YUAN, Yun SHI, Cuiwei LIU, Qihui HU, Wen YANG, Yuxing LI. Experimental study on visualization of refined oil migration in soil [J]. CIESC Journal, 2023, 74(4): 1827-1835. |
[12] | Xuanjun WU, Chao WANG, Zijian CAO, Weiquan CAI. Deep learning model of fixed bed adsorption breakthrough curve hybrid-driven by data and physical information [J]. CIESC Journal, 2023, 74(3): 1145-1160. |
[13] | Peixu ZHOU, Yalun LI, Gongran YE, Yuan ZHUANG, Xilei WU, Zhikai GUO, Xiaohong HAN. Influence of physical properties of working fluids on leakage and diffusion characteristics of refrigerant in limited space [J]. CIESC Journal, 2023, 74(2): 953-967. |
[14] | Xiang GUO, Jinshuo QIAO, Zhenhua WANG, Wang SUN, Kening SUN. Progress of structure for carbon-fueled solid oxide fuel cells [J]. CIESC Journal, 2023, 74(1): 290-302. |
[15] | Chen CHEN, Qian YANG, Yun CHEN, Rui ZHANG, Dong LIU. Chemical kinetic study on coal volatiles combustion for various oxygen concentrations [J]. CIESC Journal, 2022, 73(9): 4133-4146. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||