CIESC Journal ›› 2020, Vol. 71 ›› Issue (11): 5303-5308.DOI: 10.11949/0438-1157.20200358
• Energy and environmental engineering • Previous Articles Next Articles
Bin ZHAO1,2(),Nian LIU2,Hongli WANG2,Yiran QIAN2,Zhaohui ZHANG1,2,Liang WANG1
Received:
2020-04-07
Revised:
2020-06-19
Online:
2020-11-05
Published:
2020-11-05
Contact:
Bin ZHAO
赵斌1,2(),刘念2,王虹利2,钱怡冉2,张朝晖1,2,王亮1
通讯作者:
赵斌
作者简介:
赵斌(1982—),男,博士,副教授,基金资助:
CLC Number:
Bin ZHAO,Nian LIU,Hongli WANG,Yiran QIAN,Zhaohui ZHANG,Liang WANG. Arsenate removal using Donnan dialysis-zerovalent iron combined process[J]. CIESC Journal, 2020, 71(11): 5303-5308.
赵斌,刘念,王虹利,钱怡冉,张朝晖,王亮. 道南渗析-零价铁耦合工艺除砷效果研究[J]. 化工学报, 2020, 71(11): 5303-5308.
Add to citation manager EndNote|Ris|BibTeX
指标 | 单位 | 数值 |
---|---|---|
As | μg·L-1 | 252 |
pH | 8.09 | |
Na+ | mg·L-1 | 151.1 |
Mg2+ | mg·L-1 | 22.6 |
Ca2+ | mg·L-1 | 26.2 |
Cl- | mg·L-1 | 156.8 |
SO42- | mg·L-1 | 43.2 |
Table 1 Water quality of a rural well
指标 | 单位 | 数值 |
---|---|---|
As | μg·L-1 | 252 |
pH | 8.09 | |
Na+ | mg·L-1 | 151.1 |
Mg2+ | mg·L-1 | 22.6 |
Ca2+ | mg·L-1 | 26.2 |
Cl- | mg·L-1 | 156.8 |
SO42- | mg·L-1 | 43.2 |
NaCl/ (mol·L-1) | 一级动力学 | 二级动力学 | 准一级动力学 | 准二级动力学 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
k1/h-1 | r2 | k2/(L·mg-1·h-1) | r2 | kα/h-1 | qAs,e/(mg·g-1) | r2 | kβ/(g·mg-1·h-1) | qAs,e/(mg·g-1) | r2 | |
0 | 0.020 | 0.98 | 0.005 | 0.95 | 0.028 | 0.416 | 1.00 | 0.046 | 0.545 | 1.00 |
0.01 | 0.034 | 0.95 | 0.029 | 0.72 | 0.082 | 0.408 | 0.97 | 0.215 | 0.466 | 1.00 |
0.1 | 0.036 | 0.85 | 0.024 | 0.94 | 0.138 | 0.416 | 0.93 | 0.431 | 0.456 | 0.98 |
1.0 | 0.019 | 0.42 | 0.004 | 0.92 | 0.220 | 0.337 | 0.91 | 0.842 | 0.366 | 0.96 |
Table 2 Modeling of As(Ⅴ) removal kinetics by zerovalent iron
NaCl/ (mol·L-1) | 一级动力学 | 二级动力学 | 准一级动力学 | 准二级动力学 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
k1/h-1 | r2 | k2/(L·mg-1·h-1) | r2 | kα/h-1 | qAs,e/(mg·g-1) | r2 | kβ/(g·mg-1·h-1) | qAs,e/(mg·g-1) | r2 | |
0 | 0.020 | 0.98 | 0.005 | 0.95 | 0.028 | 0.416 | 1.00 | 0.046 | 0.545 | 1.00 |
0.01 | 0.034 | 0.95 | 0.029 | 0.72 | 0.082 | 0.408 | 0.97 | 0.215 | 0.466 | 1.00 |
0.1 | 0.036 | 0.85 | 0.024 | 0.94 | 0.138 | 0.416 | 0.93 | 0.431 | 0.456 | 0.98 |
1.0 | 0.019 | 0.42 | 0.004 | 0.92 | 0.220 | 0.337 | 0.91 | 0.842 | 0.366 | 0.96 |
1 | Sarkar S, Sengupta A K, Prakash P. The Donnan membrane principle: opportunities for sustainable engineered processes and materials [J]. Environmental Science & Technology, 2010, 44(4): 1161-1166. |
2 | Fox S, Bruner T, Oren Y, et al. Concurrent microbial reduction of high concentrations of nitrate and perchlorate in an ion exchange membrane bioreactor [J]. Biotechnology and Bioengineering, 2016, 113(9): 1881-1891. |
3 | Wisniewski J A, Kabsch-Korbutowicz M, Lakomska S. Removal of bromate ions from water in the processes with ion-exchange membranes [J]. Separation and Purification Technology, 2015, 145: 75-82. |
4 | Lao M, Companys E, Weng L P, et al. Speciation of Zn, Fe, Ca and Mg in wine with the Donnan membrane technique [J]. Food Chemistry, 2018, 239: 1143-1150. |
5 | Breytus A, Hasson D, Semiat R, et al. Ion exchange membrane adsorption in Donnan dialysis [J]. Separation and Purification Technology, 2019, 226: 252-258. |
6 | Bjorklund G, Aaseth J, Chirumbolo S, et al. Effects of arsenic toxicity beyond epigenetic modifications [J]. Environmental Geochemistry and Health, 2018, 40(3): 955-965. |
7 | Tchounwou P B, Yedjou C G, Udensi U K, et al. State of the science review of the health effects of inorganic arsenic: perspectives for future research [J]. Environmental Toxicology, 2019, 34(2): 188-202. |
8 | Zhao B, Zhao H Z, Dockko S, et al. Arsenate removal from simulated groundwater with a Donnan dialyzer [J]. Journal of Hazardous Materials, 2012, 215: 159-165. |
9 | 赵斌, 刘安琪, 刁法林, 等. 道南渗析除砷过程影响因素分析[J]. 化工学报, 2016, 67(6): 2456-2461. |
Zhao B, Liu A Q, Diao F L, et al. Kinetic analysis of arsenate removal by Donnan dialysis [J]. CIESC Journal, 2016, 67(6): 2456-2461. | |
10 | Li Y M, Guo X J, Dong H Y, et al. Selenite removal from groundwater by zero-valent iron (ZVI) in combination with oxidants [J]. Chemical Engineering Journal, 2018, 345: 432-440. |
11 | Zhu F, Ma S Y, Liu T, et al. Green synthesis of nano zero-valent iron/Cu by green tea to remove hexavalent chromium from groundwater [J]. Journal of Cleaner Production, 2018, 174: 184-190. |
12 | Li Z H, Xu S Y, Xiao G H, et al. Removal of hexavalent chromium from groundwater using sodium alginate dispersed nano zero-valent iron [J]. Journal of Environmental Management, 2019, 244: 33-39. |
13 | Huang J Y, Yi S P, Zheng C M, et al. Persulfate activation by natural zeolite supported nanoscale zero-valent iron for trichloroethylene degradation in groundwater [J]. Science of the Total Environment, 2019, 684: 351-359. |
14 | Fu F L, Dionysiou D D, Liu H. The use of zero-valent iron for groundwater remediation and wastewater treatment: a review [J]. Journal of Hazardous Materials, 2014, 267: 194-205. |
15 | Song X J, Zhang C, Wu B D, et al. Ligand effects on arsenite removal by zero-valent iron/O2: dissolution, corrosion, oxidation and coprecipitation [J]. Journal of Environmental Sciences, 2019, 86: 131-140. |
16 | Du M M, Zhang Y Q, Hussain I, et al. Effect of pyrite on enhancement of zero-valent iron corrosion for arsenic removal in water: a mechanistic study [J]. Chemosphere, 2019, 233: 744-753. |
17 | Liang Y J, Min X B, Chai L Y, et al. Stabilization of arsenic sludge with mechanochemically modified zero valent iron [J]. Chemosphere, 2017, 168: 1142-1151. |
18 | Mejia-Santillan M E, Pariona N, Bravo J, et al. Physical and arsenic adsorption properties of maghemite and magnetite sub-microparticles [J]. Journal of Magnetism and Magnetic Materials, 2018, 451: 594-601. |
19 | Mansouri T, Golchin A, Neyestani M R. The effects of hematite nanoparticles on phytoavailability of arsenic and corn growth in contaminated soils [J]. International Journal of Environmental Science and Technology, 2017, 14(7): 1525-1534. |
20 | Ramirez-Muniz K, Perez-Rodriguez F, Rangel-Mendez R. Adsorption of arsenic onto an environmental friendly goethite-polyacrylamide composite [J]. Journal of Molecular Liquids, 2018, 264: 253-260. |
21 | Kim H, Andersson T G. Arsenic surface segregation during the molecular-beam epitaxial growth of GaAs embedded in wurtzite GaN [J]. Applied Physics Letters, 2002, 80(25): 4768-4770. |
22 | Dou X M, Wang G C, Zhu M Q, et al. Identification of Fe and Zr oxide phases in an iron-zirconium binary oxide and arsenate complexes adsorbed onto their surfaces [J]. Journal of Hazardous Materials, 2018, 353: 340-347. |
23 | Su C M, Puls R W. Arsenate and arsenite removal by zerovalent iron: effects of phosphate, silicate, carbonate, borate, sulfate, chromate, molybdate, and nitrate, relative to chloride [J]. Environmental Science & Technology, 2001, 35(22): 4562-4568. |
24 | Gibert O, de Pablo J, Cortina J L, et al. In situ removal of arsenic from groundwater by using permeable reactive barriers of organic matter/limestone/zero-valent iron mixtures [J]. Environmental Geochemistry and Health, 2010, 32(4): 373-378. |
25 | Gatcha-Bandjun N, Noubactep C, Loura B B. Mitigation of contamination in effluents by metallic iron: the role of iron corrosion products [J]. Environmental Technology & Innovation, 2017, 8: 71-83. |
26 | Yang Z, Xu H, Shan C, et al. Effects of brining on the corrosion of ZVI and its subsequent As(Ⅲ/Ⅴ) and Se(Ⅳ/Ⅵ) removal from water[J]. Chemosphere, 2017, 170: 251-259. |
27 | Liu P P, Liang Q W, Luo H J, et al. Synthesis of nano-scale zero-valent iron-reduced graphene oxide-silica nano-composites for the efficient removal of arsenic from aqueous solutions [J]. Environmental Science and Pollution Research, 2019, 26(32): 33507-33516. |
28 | Mercer K L, Tobiason J E. Removal of arsenic from high ionic strength solutions: effects of ionic strength, pH, and preformed versus in situ formed HFO [J]. Environmental Science & Technology, 2008, 42(10): 3797-3802. |
29 | Farrell J, Wang J P, O'day P, et al. Electrochemical and spectroscopic study of arsenate removal from water using zero-valent iran media [J]. Environmental Science & Technology, 2001, 35(10): 2026-2032. |
30 | Esfahani A R, Firouzi A F, Sayyad G, et al. Transport and retention of polymer-stabilized zero-valent iron nanoparticles in saturated porous media: effects of initial particle concentration and ionic strength [J]. Journal of Industrial and Engineering Chemistry, 2014, 20(5): 2671-2679. |
[1] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[2] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[3] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[4] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[5] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[6] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[7] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[8] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[9] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[10] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[11] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[12] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
[13] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[14] | Yu PAN, Zihang WANG, Jiayun WANG, Ruzhu WANG, Hua ZHANG. Heat and moisture performance study of Cur-LiCl coated heat exchanger [J]. CIESC Journal, 2023, 74(3): 1352-1359. |
[15] | Xuanjun WU, Chao WANG, Zijian CAO, Weiquan CAI. Deep learning model of fixed bed adsorption breakthrough curve hybrid-driven by data and physical information [J]. CIESC Journal, 2023, 74(3): 1145-1160. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||