CIESC Journal ›› 2020, Vol. 71 ›› Issue (12): 5745-5754.DOI: 10.11949/0438-1157.20200650
• Energy and environmental engineering • Previous Articles Next Articles
ZHANG Haihua1(),DONG Haiquan2,LI Hui2,YUAN Luyun1,FANG Zhe2,CHENG Jun2()
Received:
2020-05-25
Revised:
2020-07-03
Online:
2020-12-05
Published:
2020-12-05
Contact:
CHENG Jun
张海华1(),董海泉2,李慧2,袁璐韫1,方哲2,程军2()
通讯作者:
程军
作者简介:
张海华(1972—),男,本科,工程师,基金资助:
CLC Number:
ZHANG Haihua,DONG Haiquan,LI Hui,YUAN Luyun,FANG Zhe,CHENG Jun. Metal-organic framework carbide enhances interspecies electron transfer to produce methane[J]. CIESC Journal, 2020, 71(12): 5745-5754.
张海华,董海泉,李慧,袁璐韫,方哲,程军. 碳化金属-有机骨架强化种间电子传递产甲烷[J]. 化工学报, 2020, 71(12): 5745-5754.
Add to citation manager EndNote|Ris|BibTeX
底物 | ZIF-8衍生多孔碳的添加浓度/(mg/L) | 甲烷产量/(ml/g) | 产甲烷峰值速率/(ml/(g·d)) | 动力学参数 | ||||
---|---|---|---|---|---|---|---|---|
Hm/(ml/g) | Rm/(ml/(g·d)) | λ/h | Tm/h | R2 | ||||
乙醇 | 0 | 479.03±12.07 | 28.61±3.06 | 526.89 | 29.18 | 2.34 | 8.98 | 0.995 |
50 | 536.432±8.17 | 30.10±1.94 | 601.82 | 31.39 | 2.31 | 9.36 | 0.994 | |
100 | 548.903±12.35 | 29.95±0.90 | 600.99 | 33.26 | 2.14 | 8.78 | 0.996 | |
200 | 569.098±13.99 | 31.39±0.52 | 628.40 | 32.71 | 1.83 | 8.90 | 0.993 |
Table 1 Kinetic parameters of fermentative methane production from ethanol with various concentrations of ZIF-8 derived porous carbon addition
底物 | ZIF-8衍生多孔碳的添加浓度/(mg/L) | 甲烷产量/(ml/g) | 产甲烷峰值速率/(ml/(g·d)) | 动力学参数 | ||||
---|---|---|---|---|---|---|---|---|
Hm/(ml/g) | Rm/(ml/(g·d)) | λ/h | Tm/h | R2 | ||||
乙醇 | 0 | 479.03±12.07 | 28.61±3.06 | 526.89 | 29.18 | 2.34 | 8.98 | 0.995 |
50 | 536.432±8.17 | 30.10±1.94 | 601.82 | 31.39 | 2.31 | 9.36 | 0.994 | |
100 | 548.903±12.35 | 29.95±0.90 | 600.99 | 33.26 | 2.14 | 8.78 | 0.996 | |
200 | 569.098±13.99 | 31.39±0.52 | 628.40 | 32.71 | 1.83 | 8.90 | 0.993 |
区域 | 波长(Ex/Em)/nm | 荧光响应百分比/% | |
---|---|---|---|
0 mg/L ZIF-8衍生多孔碳 | 200 mg/L ZIF-8衍生多孔碳 | ||
(1) | 220~250/200~300 | 14.5 | 10.6 |
(2) | 200~250/330~380 | 28.9 | 34.2 |
(3) | 200~250/380~500 | 18.0 | 23.6 |
(4) | 250~280/200~380 | 10.9 | 9.3 |
(5) | 250~400/380~500 | 27.7 | 22.3 |
Table 2 Parameters of five fluorescent regions based on the 3D-EEM spectrogram
区域 | 波长(Ex/Em)/nm | 荧光响应百分比/% | |
---|---|---|---|
0 mg/L ZIF-8衍生多孔碳 | 200 mg/L ZIF-8衍生多孔碳 | ||
(1) | 220~250/200~300 | 14.5 | 10.6 |
(2) | 200~250/330~380 | 28.9 | 34.2 |
(3) | 200~250/380~500 | 18.0 | 23.6 |
(4) | 250~280/200~380 | 10.9 | 9.3 |
(5) | 250~400/380~500 | 27.7 | 22.3 |
1 | Xu F, Li Y, Ge X, et al. Anaerobic digestion of food waste — challenges and opportunities[J]. Bioresource Technology, 2018, 247: 1047-1058. |
2 | Kougias P G, Angelidaki I. Biogas and its opportunities—a review[J]. Frontiers of Environmental Science & Engineering, 2018, 12(3): 14. |
3 | Weiland P. Biogas production: current state and perspectives[J]. Applied Microbiology and Biotechnology, 2010, 85(4): 849-860. |
4 | Park J H, Kang H J, Park K H, et al. Direct interspecies electron transfer via conductive materials: a perspective for anaerobic digestion applications[J]. Bioresource Technology, 2018, 254: 300-311. |
5 | Stams A J, Plugge C M. Electron transfer in syntrophic communities of anaerobic bacteria and archaea[J]. Nat. Rev. Microbiol., 2009, 7(8): 568-577. |
6 | Zhao Z, Zhang Y, Li Y, et al. Potentially shifting from interspecies hydrogen transfer to direct interspecies electron transfer for syntrophic metabolism to resist acidic impact with conductive carbon cloth[J]. Chemical Engineering Journal, 2017, 313: 10-18. |
7 | Ishii S I, Kosaka T, Hori K, et al. Coaggregation facilitates interspecies hydrogen transfer between Pelotomaculum thermopropionicum and Methanothermobacter thermautotrophicus[J]. Appl. Environ. Microbiol., 2005, 71(12): 7838-7845. |
8 | Yuan H Y, Ding L J, Zama E F, et al. Biochar modulates methanogenesis through electron syntrophy of microorganisms with ethanol as a substrate[J]. Environmental Science & Technology, 2018, 52(21): 12198-12207. |
9 | Zhang S, Chang J, Lin C, et al. Enhancement of methanogenesis via direct interspecies electron transfer between Geobacteraceae and Methanosaetaceae conducted by granular activated carbon[J]. Bioresource Technology, 2017, 245: 132-137. |
10 | Liu F, Rotaru A E, Shrestha P M, et al. Promoting direct interspecies electron transfer with activated carbon[J]. Energy & Environmental Science, 2012, 5(10): 8982-8989. |
11 | Zhang J, Zhao W, Zhang H, et al. Recent achievements in enhancing anaerobic digestion with carbon-based functional materials[J]. Bioresource Technology, 2018, 266: 555-567. |
12 | Salvador A F, Martins G, Melle‐Franco M, et al. Carbon nanotubes accelerate methane production in pure cultures of methanogens and in a syntrophic coculture[J]. Environmental Microbiology, 2017, 19(7): 2727-2739. |
13 | Yan W, Sun F, Liu J, et al. Enhanced anaerobic phenol degradation by conductive materials via EPS and microbial community alteration[J]. Chemical Engineering Journal, 2018, 352: 1-9. |
14 | Chen S, Rotaru A E, Shrestha P M, et al. Promoting interspecies electron transfer with biochar[J]. Scientific Reports, 2014, 4: 5019. |
15 | Wang X, Cheng S, Feng Y, et al. Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells[J]. Environmental Science & Technology, 2009, 43(17): 6870-6874. |
16 | Kato S, Hashimoto K, Watanabe K. Microbial interspecies electron transfer via electric currents through conductive minerals[J]. Proceedings of the National Academy of Sciences, 2012, 109(25): 10042-10046. |
17 | Reguera G, McCarthy K D, Mehta T, et al. Extracellular electron transfer via microbial nanowires[J]. Nature, 2005, 435(7045): 1098-1101. |
18 | Wang M, Zhao Z, Niu J, et al. Potential of crystalline and amorphous ferric oxides for biostimulation of anaerobic digestion[J]. ACS Sustainable Chemistry & Engineering, 2018, 7(1): 697-708. |
19 | Cheng Q, Call D F. Hardwiring microbes via direct interspecies electron transfer: mechanisms and applications[J]. Environmental Science: Processes & Impacts, 2016, 18(8): 968-980. |
20 | Liu Y, Li G, Guo Y, et al. Flexible and binder-free hierarchical porous carbon film for supercapacitor electrodes derived from MOFs/CNT[J]. ACS Applied Materials & Interfaces, 2017, 9(16): 14043-14050. |
21 | Salunkhe R R, Kaneti Y V, Kim J, et al. Nanoarchitectures for metal–organic framework-derived nanoporous carbons toward supercapacitor applications[J]. Accounts of Chemical Research, 2016, 49(12): 2796-2806. |
22 | Gargiulo N, Peluso A, Aprea P, et al. Chromium-based MIL-101 metal organic framework as a fully regenerable D4 adsorbent for biogas purification[J]. Renewable Energy, 2019, 138: 230-235. |
23 | Xu, Y X, Li Q, Xue H G, et al. Metal-organic frameworks for direct electrochemical applications[J]. Coordination Chemistry Reviews, 2018, 376: 292-318. |
24 | Cheng J, Xie B, Zhou J, et al. Cogeneration of H2 and CH4 from water hyacinth by two-step anaerobic fermentation[J]. International Journal of Hydrogen Energy, 2010, 35(7): 3029-3035. |
25 | Xia A, Cheng J, Song W, et al. Fermentative hydrogen production using algal biomass as feedstock[J]. Renewable and Sustainable Energy Reviews, 2015, 51: 209-230. |
26 | Yin Q, Yang S, Wang Z, et al. Clarifying electron transfer and metagenomic analysis of microbial community in the methane production process with the addition of ferroferric oxide[J]. Chemical Engineering Journal, 2018, 333: 216-225. |
27 | Yang G, Lin J, Zeng E Y, et al. Extraction and characterization of stratified extracellular polymeric substances in Geobacter biofilms[J]. Bioresource Technology, 2019, 276: 119-126. |
28 | Wang D, Huang Y, Xu Q, et al. Free ammonia aids ultrasound pretreatment to enhance short-chain fatty acids production from waste activated sludge[J]. Bioresource Technology, 2019, 275: 163-171. |
29 | Chen W, Westerhoff P, Leenheer J A, et al. Fluorescence excitation- emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710. |
30 | Reguera G. Harnessing the power of microbial nanowires[J]. Microbial Biotechnology, 2018, 11(6): 979-994. |
31 | Xu H, Chang J, Wang H, et al. Enhancing direct interspecies electron transfer in syntrophic-methanogenic associations with (semi)conductive iron oxides: effects and mechanisms[J]. Sci. Total Environ., 2019, 695: 133876. |
32 | Liu X, Shi L, Gu J D. Microbial electrocatalysis: redox mediators responsible for extracellular electron transfer[J]. Biotechnol. Adv., 2018, 36(7): 1815-1827. |
33 | Dang Y, Lei Y, Liu Z, et al. Impact of fulvic acids on bio-methanogenic treatment of municipal solid waste incineration leachate[J]. Water Research, 2016, 106: 71-78. |
34 | Liang Z, Tu Q, Su X, et al. Formation, extracellular polymeric substances, and structural stability of aerobic granules enhanced by granular activated carbon[J]. Environmental Science and Pollution Research, 2019, 26(6): 6123-6132. |
[1] | Longyi LYU, Wenbo JI, Muda HAN, Weiguang LI, Wenfang GAO, Xiaoyang LIU, Li SUN, Pengfei WANG, Zhijun REN, Guangming ZHANG. Enhanced anaerobic removal of halogenated organic pollutants by iron-based conductive materials: research progress and future perspectives [J]. CIESC Journal, 2023, 74(8): 3193-3202. |
[2] | Chao NIU, Shengqiang SHEN, Yan YANG, Bonian PAN, Yiqiao LI. Flow process calculation and performance analysis of methane BOG ejector [J]. CIESC Journal, 2023, 74(7): 2858-2868. |
[3] | Xiaoyang LIU, Jianliang YU, Yujie HOU, Xingqing YAN, Zhenhua ZHANG, Xianshu LYU. Effect of spiral microchannel on detonation propagation of hydrogen-doped methane [J]. CIESC Journal, 2023, 74(7): 3139-3148. |
[4] | Xiaowen ZHOU, Jie DU, Zhanguo ZHANG, Guangwen XU. Study on the methane-pulsing reduction characteristics of Fe2O3-Al2O3 oxygen carrier [J]. CIESC Journal, 2023, 74(6): 2611-2623. |
[5] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[6] | Nan HU, Demin TAO, Zhaolan YANG, Xuebing WANG, Xiangxu ZHANG, Yulong LIU, Dexin DING. Remediation of percolate water from uranium tailings reservoir by coupling iron-carbon micro-electrolysis and sulfate reducing bacteria [J]. CIESC Journal, 2023, 74(6): 2655-2667. |
[7] | Han HU, Liang YANG, Chunxiao LI, Daoping LIU. Kinetics of methane storage in the natural tobacco leaching filtrate in the hydrate form [J]. CIESC Journal, 2023, 74(3): 1313-1321. |
[8] | Xiaowan PENG, Xiaonan GUO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Modeling and simulation of CH4/N2 separation process with two absorption-adsorption columns using ZIF-8 slurry [J]. CIESC Journal, 2023, 74(2): 784-795. |
[9] | Guojun XI, Zihan LIU, Guangping LEI. Enhanced adsorption and separation of low concentration coalbed methane based on synergistic effect between FeTPPs and CuBTC [J]. CIESC Journal, 2022, 73(9): 3940-3949. |
[10] | Shanshan LIAO, Shaogang ZHANG, Junjun TAO, Jiahao LIU, Jinhui WANG. Numerical simulation analysis of vertical jet fire impinging on the pipeline [J]. CIESC Journal, 2022, 73(9): 4226-4234. |
[11] | Yuelin WANG, Wei CHAO, Xiaocheng LAN, Zhipeng MO, Shuhuan TONG, Tiefeng WANG. Review of ethanol production via biological syngas fermentation [J]. CIESC Journal, 2022, 73(8): 3448-3460. |
[12] | Cuiping TANG, Yanan ZHANG, Deqing LIANG, Xiang LI. Inhibition effect of chain end modified polyvinyl caprolactam on methane hydrate formation [J]. CIESC Journal, 2022, 73(5): 2130-2139. |
[13] | Xuejin GAO, Zihe HE, Huihui GAO, Yongsheng QI. Quality-related fault monitoring of multi-phase fermentation process based on joint canonical variable matrix [J]. CIESC Journal, 2022, 73(3): 1300-1314. |
[14] | Shuai YAN, Jiabao YANG, Yan GONG, Qinghua GUO, Guangsuo YU. Effects of CO2 dilution on the structure of methane inverse diffusion flame [J]. CIESC Journal, 2022, 73(3): 1335-1342. |
[15] | Yanshan WANG, Xiaochao ZHU, Yingjin SONG, Yihang LI. Study on anaerobic digestion pretreatment coupled with hydrothermal carbonization of grass [J]. CIESC Journal, 2022, 73(2): 904-913. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||