CIESC Journal ›› 2020, Vol. 71 ›› Issue (12): 5735-5744.DOI: 10.11949/0438-1157.20200530
• Energy and environmental engineering • Previous Articles Next Articles
SUN Cong1(),YAN Bowei1,CAI Changyong1,HAN Zhennan1(),XU Guangwen1,2()
Received:
2020-05-08
Revised:
2020-06-30
Online:
2020-12-05
Published:
2020-12-05
Contact:
HAN Zhennan,XU Guangwen
孙聪1(),闫博威1,蔡长庸1,韩振南1(),许光文1,2()
通讯作者:
韩振南,许光文
作者简介:
孙聪(1994—),男,硕士研究生,基金资助:
CLC Number:
SUN Cong,YAN Bowei,CAI Changyong,HAN Zhennan,XU Guangwen. Characteristics of reaction and product microstructure during light calcination of magnesite in transport bed[J]. CIESC Journal, 2020, 71(12): 5735-5744.
孙聪,闫博威,蔡长庸,韩振南,许光文. 菱镁矿输送床轻烧过程反应与产物微观结构特性[J]. 化工学报, 2020, 71(12): 5735-5744.
Add to citation manager EndNote|Ris|BibTeX
Composition | Content/%(mass) |
---|---|
MgO | 46.12 |
SiO2 | 0.58 |
Al2O3 | 1.27 |
CaO | 0.53 |
MnO | 0.01 |
Fe2O3 | 0.24 |
LOI① | 51.24 |
Table 1 Chemical compositions of magnesite
Composition | Content/%(mass) |
---|---|
MgO | 46.12 |
SiO2 | 0.58 |
Al2O3 | 1.27 |
CaO | 0.53 |
MnO | 0.01 |
Fe2O3 | 0.24 |
LOI① | 51.24 |
Particle size/μm | Temperature/℃ | Residence time /h | LOI/%(mass) | Coloration time/s |
---|---|---|---|---|
106~150 | 900 | 2 | 0.1 | 294 |
Table 2 Calcination conditions in muffle furnace and product property
Particle size/μm | Temperature/℃ | Residence time /h | LOI/%(mass) | Coloration time/s |
---|---|---|---|---|
106~150 | 900 | 2 | 0.1 | 294 |
Case | Feeding rate of magnesite/ (kg/h) | Bottom temperature of calcinator /℃ | Flow rate of propane/ (m3/h) | Flow rate of air / (m3/h) | Content of CO2 in flue gas/ % (vol.) | Flow rate of flue gas/ (m3/h) | Gas velocity in calcinatory/ (m/s) | Residence time /s |
---|---|---|---|---|---|---|---|---|
Case 1 | 1.2 | 850 | 1.05 | 64.18 | 4.18 | 75.36 | 9.7—12.3 | 0.91 |
Case 2 | 1.2 | 900 | 1.13 | 68.74 | 4.32 | 78.4 | 10.5—13.5 | 0.84 |
Case 3 | 1.2 | 950 | 1.25 | 71.25 | 4.71 | 79.67 | 10.9—14.2 | 0.79 |
Case 4 | 1.2 | 1000 | 1.33 | 74.83 | 4.98 | 80.96 | 11.4—15.2 | 0.75 |
Table 3 Operation parameters of transport bed under different calcination conditions
Case | Feeding rate of magnesite/ (kg/h) | Bottom temperature of calcinator /℃ | Flow rate of propane/ (m3/h) | Flow rate of air / (m3/h) | Content of CO2 in flue gas/ % (vol.) | Flow rate of flue gas/ (m3/h) | Gas velocity in calcinatory/ (m/s) | Residence time /s |
---|---|---|---|---|---|---|---|---|
Case 1 | 1.2 | 850 | 1.05 | 64.18 | 4.18 | 75.36 | 9.7—12.3 | 0.91 |
Case 2 | 1.2 | 900 | 1.13 | 68.74 | 4.32 | 78.4 | 10.5—13.5 | 0.84 |
Case 3 | 1.2 | 950 | 1.25 | 71.25 | 4.71 | 79.67 | 10.9—14.2 | 0.79 |
Case 4 | 1.2 | 1000 | 1.33 | 74.83 | 4.98 | 80.96 | 11.4—15.2 | 0.75 |
Number of calcination cycles | B① | D②/nm |
---|---|---|
1 | 0.81 | 10.5 |
2 | 0.72 | 12.3 |
3 | 0.64 | 13.3 |
4 | 0.63 | 13.8 |
Table 4 Half-peak width of peak at 2θ=42.9° in XRD pattern and grain size of MgO crystal
Number of calcination cycles | B① | D②/nm |
---|---|---|
1 | 0.81 | 10.5 |
2 | 0.72 | 12.3 |
3 | 0.64 | 13.3 |
4 | 0.63 | 13.8 |
1 | 肖丽聪, 代淑娟. 我国菱镁矿现状及选矿方法的介绍[J]. 有色矿冶, 2017, 33(1): 29-31. |
Xiao L C, Dai S J. Introduction on the status of magnesite and its benefication methods in China[J]. Non-ferrous Mining and Metallurgy, 2017, 33(1): 29-31. | |
2 | 李广垠, 李志坚, 郭玉香, 等. 煅烧温度对轻烧镁粉显微结构与活性的影响[J]. 耐火材料, 2016, 50(5): 367-369. |
Li G Y, Li Z J, Guo Y X, et al. Effect of calcination temperatures on microstructure and activity light burned magnesite powder[J]. Refractories, 2016, 50(5): 367-369. | |
3 | 朱静, 叶楠, 杨家宽. 菱镁矿石制活性MgO的修正水化活性评价法[J]. 金属矿山, 2013, 42(11): 88-91. |
Zhu J, Ye N, Yang J K. Evaluation methods on corrected hydration activity in preparation of active MgO with calcined magnesite[J]. Metal Mine, 2013, 42(11): 88-91. | |
4 | Vandeperre L, Liska M, Al-Tabbaa A. Microstructures of reactive magnesia cement blends[J]. Cement and Concrete Composites, 2008, 30(8): 706-714. |
5 | Tsiplakou E, Pappas A, Mitsiopoulou C, et al. Evaluation of different types of calcined magnesites as feed supplement in small ruminant[J]. Small Ruminant Research, 2017, 149: 188-195. |
6 | Yang N, Ning P, Li K, et al. MgO-based adsorbent achieved from magnesite for CO2 capture in simulate wet flue gas[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 86: 73-80. |
7 | Stefanidis S, Karakoulia S, Kalogiannis K, et al. Natural magnesium oxide (MgO) catalysts: a cost-effective sustainable alternative to acid zeolites for the in situ upgrading of biomass fast pyrolysis oil[J]. Applied Catalysis B: Environmental, 2016, 196: 155-173. |
8 | Mo L W, Panesar D K. Effects of accelerated carbonation on the microstructure of Portland cement pastes containing reactive MgO[J]. Cement and Concrete Research, 2012, 42(6): 769-777. |
9 | 巴浩静, 白丽梅, 赵文青, 等. 轻烧氧化镁制备及深加工研究进展[J]. 矿产保护与利用, 2017, 1: 84-89. |
Ba H J, Bai L M, Zhao W Q, et al. Review on preparation and processing of caustic magnesite[J]. Conservation and Utilization of Mineral Resources, 2017, 1: 84-89. | |
10 | Bai L, Ma Y, Zhao W, et al. Optimization and mechanism in preparing active magnesium oxide from magnesite[J]. Journal of Thermal Analysis and Calorimetry, 2017, 129(2): 1103-1109. |
11 | 刘欣伟, 冯雅丽, 李浩然, 等. 菱镁矿制备轻烧氧化镁及其水化动力学研究[J]. 中南大学学报(自然科学版), 2011, 42(12): 3912-3917. |
Liu X W, Feng Y L, Li H R, et al. Preparation of light-burned magnesia from magnesite and its hydration kinetics[J]. Journal Central South University (Science and Technology), 2011, 42(12): 3912-3917. | |
12 | van der Merwe E, Strydom C, Botha A. Hydration of medium reactive industrial magnesium oxide with magnesium acetate[J]. Journal of Thermal Analysis and Calorimetry, 2004, 77(1): 49-56. |
13 | Erşahan H, Ekmekyapar A, Sevim F. Flash calcination of a magnesite ore in a free-fall reactor and leaching of magnesia[J]. International Journal of Mineral Processing, 1994, 42(1/2): 121-136. |
14 | 李晓辉, 唐亚昆, 高莎莎, 等. 新疆尖山菱镁矿制备轻烧氧化镁的煅烧工艺[J]. 硅酸盐通报, 2018, 37(1): 73-79. |
Li X H, Tang Y K, Gao S S, et al. Calcining process of light-burned magnesia based on Xinjiang Jianshan Magnesite[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(1): 73-79. | |
15 | Eubank W R. Calcination studies of magnesium oxides[J]. Journal of the American Ceramic Society, 1951, 34(8): 225-229. |
16 | Mo L W, Deng M, Tang M S. Effects of calcination condition on expansion property of MgO-type expansive agent used in cement-based materials[J]. Cement and Concrete Research, 2010, 40(3): 437-446. |
17 | 郭慕孙, 李洪钟. 流态化手册[M]. 北京: 化学工业出版社, 2007: 150-152. |
Guo M S, Li H Z. Handbook of Fluidization[M]. Beijing: Chemical Industry Press, 2007: 150-152. | |
18 | 姜微微, 郝文倩, 刘雪景, 等. 微型流化床内菱镁矿轻烧反应特征及动力学[J]. 化工学报, 2019, 70(8): 2928-2937. |
Jiang W W, Hao W Q, Liu X J, et al. Characteristic and kinetics of light calcination of magnesite in micro fluidized bed reaction analyzer[J]. CIESC Journal, 2019, 70(8): 2928-2937. | |
19 | 宁志强, 翟玉春, 孙立芹, 等. 氢氧化镁分解动力学的研究[J]. 分子科学学报, 2009, 25(1): 27-30. |
Ning Z Q, Zhai Y C, Sun L Q, et al. Study on the thermal decomposition kinetics of magnesium hydroxide[J]. Journal of Molecular Science, 2009, 25(1): 27-30. | |
20 | Teklay A, Yin C, Rosendahl L. Flash calcination of kaolinite rich clay and impact of process conditions on the quality of the calcines: a way to reduce CO2 footprint from cement industry[J]. Applied Energy, 2016, 162: 1218-1224. |
21 | 赖登国, 战金辉, 陈兆辉, 等. 内构件移动床固体热载体油页岩热解技术[J]. 化工学报, 2017, 68(10): 3647-3657. |
Lai D G, Zhan J H, Chen Z H, et al. Oil shale pyrolysis by solid heat carrier in internal-structured moving bed[J]. CIESC Journal, 2017, 68(10): 3647-3657. | |
22 | 卢仁红. 高温悬浮态下石灰石与菱镁矿热分解特性比较及动力学研究[J]. 水泥工程, 2018, 31(2): 13-16. |
Lu R H. Comparison of decomposition characteristics and kineties of magnesite with limestone under temperature suspension state[J]. Cement Engineering, 2018, 31(2): 13-16. | |
23 | 张勇, 丁爽. 白云石的热分解对氧化镁活性的影响[J]. 化工矿物与加工, 2008, 37(4): 9-11. |
Zhang Y, Ding S. Study on impact of thermal decomposition of dolomite on MgO activity[J]. Industrial Minerals & Processing, 2008, 37(4): 9-11. | |
24 | Mo L W, Deng M, Tang M S. Effect of calcination temperature on the microstructure, activity and expansion of MgO-type expansive additive used in cement-based materials[J]. Key Engineering Materials, 2009, 400/401/402: 169-174. |
25 | 孙华文, 崔崇, 张宏华, 等. MgO的晶粒大小和晶格畸变与水化活性的关系[J]. 武汉工业大学学报, 1991, 13(4): 21-24. |
Sun H W, Cui C, Zhang H H, et al. Relationship between crystalline size and lattice distortion of MgO and its activity[J]. Journal of Wuhan University of Technology, 1991, 13(4): 21-24. | |
26 | 李楠, 陈荣荣. 菱镁矿煅烧过程中氧化镁烧结与晶体生长与动力学的研究[J]. 硅酸盐学报, 1989, 17(1): 64-69. |
Li N, Chen R R. Kinetics of sinteringand grain growth of MgO during calcination of magnesite[J]. Journal of the Chinese Ceramic Society, 1989, 17(1): 64-69. | |
27 | Gao Q Y, Wei G, Jiang X, et al. Characteristics of calcined magnesite and its application in oxidized pellet production[J]. Journal of Iron and Steel Research International, 2014, 21(4): 408-412. |
28 | Liu B, Thomas P, Ray A, et al. A TG analysis of the effect of calcination conditions on the properties of reactive magnesia[J]. Journal of Thermal Analysis and Calorimetry, 2007, 88(1): 145-149. |
29 | 高强健, 姜鑫, 沈峰满, 等. 轻烧菱镁石制备与表征及其对球团生球质量的影响[J]. 东北大学学报(自然科学版), 2017, 38(3): 370-374. |
Gao Q J, Jiang X, Shen F M, et al. Preparing and characterization for caustic calcined magnesite and its effect on quality of green-pellets[J]. Journal of Northeastern University (Natural Science), 2017, 38(3): 370-374. | |
30 | 徐玲玲, 杨南如, 陶洪亮, 等. MgO活性对氯镁石材料开裂和耐水性的影响[J]. 硅酸盐学报, 2003, 31(8): 759-769. |
Xu L L, Yang N R, Tao H L, et al. Effect of chemical activity of MgO on cracking and water-resistance of magnesium oxycloride materials[J]. Journal of the Chinese Ceramic Society, 2003, 31(8): 759-769. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Chunyu LIU, Huanyu ZHOU, Yue MA, Changtao YUE. Drying characteristics and mathematical model of CaO-conditioned oil sludge [J]. CIESC Journal, 2023, 74(7): 3018-3027. |
[3] | Zhen LONG, Jinhang WANG, Junjie REN, Yong HE, Xuebing ZHOU, Deqing LIANG. Experimental study on inhibition effect of natural gas hydrate formation by mixing ionic liquid with PVCap [J]. CIESC Journal, 2023, 74(6): 2639-2646. |
[4] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
[5] | Simin YI, Yali MA, Weiqiang LIU, Jinshuai ZHANG, Yan YUE, Qiang ZHENG, Songyan JIA, Xue LI. Study on ammonia evaporation and hydration kinetics of microcrystalline magnesite [J]. CIESC Journal, 2023, 74(4): 1578-1586. |
[6] | Xiang GUO, Jinshuo QIAO, Zhenhua WANG, Wang SUN, Kening SUN. Progress of structure for carbon-fueled solid oxide fuel cells [J]. CIESC Journal, 2023, 74(1): 290-302. |
[7] | Kaiyue WANG, Yongli MA, Chen LI, Mingyan LIU. Gas-liquid mass transfer coefficients in the gas-liquid-solid micro-fluidized beds [J]. CIESC Journal, 2022, 73(8): 3529-3540. |
[8] | Yafu LI, Liangliang FU, Haolong BAI, Dingrong BAI, Guangwen XU. The simultaneous synthesis of high-quality forsterite and sintered magnesia from magnesite flotation tailings [J]. CIESC Journal, 2022, 73(8): 3679-3687. |
[9] | Gang WANG, Zhihao XIA, Xiyan LI, Hong ZHANG, Zhennan HAN, Xingfei SONG, Guangwen XU. Effect of atmosphere on active performance of light-burned magnesium oxides from calcined magnesite in fluidized bed [J]. CIESC Journal, 2022, 73(8): 3699-3707. |
[10] | Xiaoqiang FAN, Zhengliang HUANG, Jingyuan SUN, Jingdai WANG, Xiaofei WANG, Xiaobo HU, Guodong HAN, Yongrong YANG, Wenqing WU. Development of cloudy gas-liquid fluidized bed ethylene polymerization process and high performance products [J]. CIESC Journal, 2022, 73(6): 2742-2747. |
[11] | Shanwei HU, Xinhua LIU. Multiscale trans-regime EMMS modeling of gas-solid fluidization systems [J]. CIESC Journal, 2022, 73(6): 2514-2528. |
[12] | Lingfei KONG, Yanpei CHEN, Wei WANG. Dynamic study of mesoscale structures of particles in gas-solid fluidization [J]. CIESC Journal, 2022, 73(6): 2486-2495. |
[13] | Ming JIANG, Qiang ZHOU. Progress on mechanisms of mesoscale structures and mesoscale drag model in gas-solid fluidized beds [J]. CIESC Journal, 2022, 73(6): 2468-2485. |
[14] | Chenyang ZHOU, Ying JIA, Yuemin ZHAO, Yong ZHANG, Zhijie FU, Yuqing FENG, Chenlong DUAN. Intensification of dry dense medium fluidization separation process from a mesoscale perspective [J]. CIESC Journal, 2022, 73(6): 2452-2467. |
[15] | Cong HE, Wenqi ZHONG, Guanwen ZHOU, Xi CHEN. Study on decomposition characteristics of cement raw meal in suspension furnace at high altitude [J]. CIESC Journal, 2022, 73(5): 2120-2129. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||