CIESC Journal ›› 2020, Vol. 71 ›› Issue (12): 5610-5619.DOI: 10.11949/0438-1157.20200426
• Separation engineering • Previous Articles Next Articles
CHANG Cheng1,2(),JI Zhongli2,LIU Jialin2
Received:
2020-04-24
Revised:
2020-07-04
Online:
2020-12-05
Published:
2020-12-05
Contact:
CHANG Cheng
通讯作者:
常程
作者简介:
常程(1988—),男,博士,讲师,基金资助:
CLC Number:
CHANG Cheng,JI Zhongli,LIU Jialin. Saturation models of oleophilic coalescing filters[J]. CIESC Journal, 2020, 71(12): 5610-5619.
常程,姬忠礼,刘佳霖. 亲油型聚结滤芯饱和度预测模型研究[J]. 化工学报, 2020, 71(12): 5610-5619.
Add to citation manager EndNote|Ris|BibTeX
Ref. | Model | Filter material | Fiber diameter/μm | Thickness/mm |
---|---|---|---|---|
[ | stainless steel fiber | 4—22 | 7.1—7.8 | |
[ | glass fiber | 2.9, 8.5 | 8.8 | |
[ | glass fiber | 0.62—1.24 | 0.53—0.65 | |
stainless steel fiber | 4.0—6.4 | 5.16—6.90 | ||
[ | glass fiber | 2.99 | 0.5 |
Table 1 Saturation models and the applicable filter material parameters
Ref. | Model | Filter material | Fiber diameter/μm | Thickness/mm |
---|---|---|---|---|
[ | stainless steel fiber | 4—22 | 7.1—7.8 | |
[ | glass fiber | 2.9, 8.5 | 8.8 | |
[ | glass fiber | 0.62—1.24 | 0.53—0.65 | |
stainless steel fiber | 4.0—6.4 | 5.16—6.90 | ||
[ | glass fiber | 2.99 | 0.5 |
Filter | Material | Thickness /mm | Packing density | Fiber diameter /μm | Contact angle/ (°) |
---|---|---|---|---|---|
A | glass fiber | 0.51±0.01 | 0.063±0.001 | 2.92±0.10 | 35.3±1.9 |
B | glass fiber | 0.62±0.02 | 0.062±0.001 | 2.00±0.08 | 39.1±1.7 |
C | glass fiber | 0.41±0.01 | 0.072±0.001 | 1.79±0.06 | 46.2±2.1 |
Table 2 Properties of experimental filter materials
Filter | Material | Thickness /mm | Packing density | Fiber diameter /μm | Contact angle/ (°) |
---|---|---|---|---|---|
A | glass fiber | 0.51±0.01 | 0.063±0.001 | 2.92±0.10 | 35.3±1.9 |
B | glass fiber | 0.62±0.02 | 0.062±0.001 | 2.00±0.08 | 39.1±1.7 |
C | glass fiber | 0.41±0.01 | 0.072±0.001 | 1.79±0.06 | 46.2±2.1 |
Parameter | Filter A4 | Filter B4 | Filter C4 |
---|---|---|---|
df/μm | 2.92 | 2.00 | 1.79 |
α | 0.063 | 0.062 | 0.072 |
Z /mm | 2.03 | 2.48 | 1.64 |
W /m | 0.15 | 0.15 | 0.15 |
N | 4 | 4 | 4 |
Q /(m3/s) | 0.002124 | 0.002124 | 0.002124 |
Af /m2 | 0.0177 | 0.0177 | 0.0177 |
u /(m/s) | 0.12 | 0.12 | 0.12 |
u*/(m/s) | 0.0176 | 0.0176 | 0.0176 |
D /(m3/s) | 9.69×10-10 | 9.69×10-10 | 9.69×10-10 |
ΔPdry/kPa | 0.53 | 1.36 | 1.40 |
ΔPe /kPa | 4.55 | 7.38 | 10.11 |
ρl/(kg/m3) | 912 | 912 | 912 |
σ /(N/m) | 0.03 | 0.03 | 0.03 |
μg /(Pa·s) | 17.9×10-6 | 17.9×10-6 | 17.9×10-6 |
μl /(Pa·s) | 0.023 | 0.023 | 0.023 |
θ[式(2)]/(°) | 35.3 | 39.1 | 46.2 |
θ[式(7)]/(°) | 65.8 | 67.4 | 71.6 |
cf | 1 | 1 | 1 |
A | 50.7 | 50.7 | 50.7 |
B | 42.1 | 42.1 | 42.1 |
Table 3 All parameters used to predict the saturation of filters A4, B4 and C4
Parameter | Filter A4 | Filter B4 | Filter C4 |
---|---|---|---|
df/μm | 2.92 | 2.00 | 1.79 |
α | 0.063 | 0.062 | 0.072 |
Z /mm | 2.03 | 2.48 | 1.64 |
W /m | 0.15 | 0.15 | 0.15 |
N | 4 | 4 | 4 |
Q /(m3/s) | 0.002124 | 0.002124 | 0.002124 |
Af /m2 | 0.0177 | 0.0177 | 0.0177 |
u /(m/s) | 0.12 | 0.12 | 0.12 |
u*/(m/s) | 0.0176 | 0.0176 | 0.0176 |
D /(m3/s) | 9.69×10-10 | 9.69×10-10 | 9.69×10-10 |
ΔPdry/kPa | 0.53 | 1.36 | 1.40 |
ΔPe /kPa | 4.55 | 7.38 | 10.11 |
ρl/(kg/m3) | 912 | 912 | 912 |
σ /(N/m) | 0.03 | 0.03 | 0.03 |
μg /(Pa·s) | 17.9×10-6 | 17.9×10-6 | 17.9×10-6 |
μl /(Pa·s) | 0.023 | 0.023 | 0.023 |
θ[式(2)]/(°) | 35.3 | 39.1 | 46.2 |
θ[式(7)]/(°) | 65.8 | 67.4 | 71.6 |
cf | 1 | 1 | 1 |
A | 50.7 | 50.7 | 50.7 |
B | 42.1 | 42.1 | 42.1 |
Authors | df/μm | α | l/mm | n | Af/m2 | L/m | u/(m/s) | ΔPchannel/kPa | ρl/(kg/m3) | σ/(N/m) |
---|---|---|---|---|---|---|---|---|---|---|
this work-A | 2.92 | 0.063 | 0.51 | 1~4 | 0.0177 | 0.15 | 0.12 | 0.82~1.64 | 912 | 0.03 |
this work-B | 2.00 | 0.062 | 0.62 | 1~4 | 0.0177 | 0.15 | 0.12 | 1.81~4.06 | 912 | 0.03 |
this work-C | 1.79 | 0.072 | 0.41 | 1~4 | 0.0177 | 0.15 | 0.12 | 2.21~5.46 | 912 | 0.03 |
Mead-Hunter等[ | 1.1 | 0.064 | 0.53 | 1 | 0.0017 | 0.047 | 0.153 | 3.15 | 841 | 0.028 |
Mead-Hunter等[ | 1.24 | 0.054 | 0.65 | 1 | 0.0017 | 0.047 | 0.153 | 2.28 | 841 | 0.028 |
Kolb等[ | 2.99 | 0.05 | 0.5 | 10 | 0.0064 | 0.08 | 0.05~0.7 | 1.37~6.60 | 900 | 0.031 |
Chang等[ | 1.93 | 0.076 | 0.52 | 4 | 0.0198 | 0.188 | 0.1 | 3.09 | 912 | 0.03 |
Kampa等[ | 1 | 0.05 | 0.5 | 10 | 0.0064 | 0.08 | 0.3 | 21.35 | 900 | 0.03 |
Kolb等[ | 4.0 | 0.061 | 0.64 | 3 | 0.0064 | 0.08 | 0.25 | 1.79 | 900 | 0.031 |
Chen等[ | 4.08 | 0.072 | 0.41 | 4 | 0.0177 | 0.15 | 0.12 | 0.67 | 912 | 0.03 |
Chen等[ | 3.07 | 0.067 | 0.46 | 4 | 0.0177 | 0.15 | 0.12 | 1.36 | 912 | 0.03 |
Chen等[ | 2.33 | 0.070 | 0.46 | 4 | 0.0177 | 0.15 | 0.12 | 2.17 | 912 | 0.03 |
Chen等[ | 1.92 | 0.071 | 0.45 | 4 | 0.0177 | 0.15 | 0.12 | 4.25 | 912 | 0.03 |
Frising等[ | 1.21 | 0.078 | 0.409 | 1 | 0.0095 | 0.11 | 0.058~0.25 | 2.81~5.41 | 913.4 | 0.03 |
Table 4 All parameters used for predicting saturation
Authors | df/μm | α | l/mm | n | Af/m2 | L/m | u/(m/s) | ΔPchannel/kPa | ρl/(kg/m3) | σ/(N/m) |
---|---|---|---|---|---|---|---|---|---|---|
this work-A | 2.92 | 0.063 | 0.51 | 1~4 | 0.0177 | 0.15 | 0.12 | 0.82~1.64 | 912 | 0.03 |
this work-B | 2.00 | 0.062 | 0.62 | 1~4 | 0.0177 | 0.15 | 0.12 | 1.81~4.06 | 912 | 0.03 |
this work-C | 1.79 | 0.072 | 0.41 | 1~4 | 0.0177 | 0.15 | 0.12 | 2.21~5.46 | 912 | 0.03 |
Mead-Hunter等[ | 1.1 | 0.064 | 0.53 | 1 | 0.0017 | 0.047 | 0.153 | 3.15 | 841 | 0.028 |
Mead-Hunter等[ | 1.24 | 0.054 | 0.65 | 1 | 0.0017 | 0.047 | 0.153 | 2.28 | 841 | 0.028 |
Kolb等[ | 2.99 | 0.05 | 0.5 | 10 | 0.0064 | 0.08 | 0.05~0.7 | 1.37~6.60 | 900 | 0.031 |
Chang等[ | 1.93 | 0.076 | 0.52 | 4 | 0.0198 | 0.188 | 0.1 | 3.09 | 912 | 0.03 |
Kampa等[ | 1 | 0.05 | 0.5 | 10 | 0.0064 | 0.08 | 0.3 | 21.35 | 900 | 0.03 |
Kolb等[ | 4.0 | 0.061 | 0.64 | 3 | 0.0064 | 0.08 | 0.25 | 1.79 | 900 | 0.031 |
Chen等[ | 4.08 | 0.072 | 0.41 | 4 | 0.0177 | 0.15 | 0.12 | 0.67 | 912 | 0.03 |
Chen等[ | 3.07 | 0.067 | 0.46 | 4 | 0.0177 | 0.15 | 0.12 | 1.36 | 912 | 0.03 |
Chen等[ | 2.33 | 0.070 | 0.46 | 4 | 0.0177 | 0.15 | 0.12 | 2.17 | 912 | 0.03 |
Chen等[ | 1.92 | 0.071 | 0.45 | 4 | 0.0177 | 0.15 | 0.12 | 4.25 | 912 | 0.03 |
Frising等[ | 1.21 | 0.078 | 0.409 | 1 | 0.0095 | 0.11 | 0.058~0.25 | 2.81~5.41 | 913.4 | 0.03 |
1 | Mead-Hunter R, King A J C, Mullins B J. Aerosol-mist coalescing filters—a review[J]. Separation and Purification Technology, 2014, 133: 484-506. |
2 | Contal P, Simao J, Thomas D, et al. Clogging of fibre filters by submicron droplets. Phenomena and influence of operating conditions[J]. Journal of Aerosol Science, 2004, 35: 263-278. |
3 | Kampa D, Wurster S, Buzengeiger J, et al. Pressure drop and liquid transport through coalescence filter media used for oil mist filtration[J]. International Journal of Multiphase Flow, 2014, 58: 313-324. |
4 | Kampa D, Wurster S, Meyer J, et al. Validation of a new phenomenological “jump-and-channel” model for the wet pressure drop of oil mist filters[J]. Chemical Engineering Science, 2015, 122: 150-160. |
5 | 常程, 姬忠礼, 黄金斌, 等. 气液过滤过程中液滴二次夹带现象分析[J]. 化工学报, 2015, 66(4): 1344-1352. |
Chang C, Ji Z L, Huang J B, et al. Analysis of re-entrainment in process of gas-liquid filtration[J]. CIESC Journal, 2015, 66(4): 1344-1352. | |
6 | 陈锋, 姬忠礼, 齐强强. 孔径梯度分布对亲油型滤材气液过滤性能的影响[J]. 化工学报, 2017, 68(4): 1442-1451. |
Chen F, Ji Z L, Qi Q Q. Influence of pore size distribution on gas-liquid filtration performance of oleophilic filters[J]. CIESC Journal, 2017, 68(4): 1442-1451. | |
7 | Chen F, Ji Z, Qi Q. Effect of liquid surface tension on the filtration performance of coalescing filters[J]. Separation and Purification Technology, 2019, 209: 881-891. |
8 | Kolb H E, Watzek A K, Zaghini F V, et al. A mesoscale model for the relationship between efficiency and internal liquid distribution of droplet mist filters[J]. Journal of Aerosol Science, 2018, 123: 219-230. |
9 | Penner T, Meyer J, Kasper G, et al. Impact of operating conditions on the evolution of droplet penetration in oil mist filters [J]. Separation and Purification Technology, 2019, 211: 697-703. |
10 | Kolb H E, Kasper G. Mist filters: how steady is their “steady state”? [J]. Chemical Engineering Science, 2019, 204: 118-127. |
11 | Liew T P, Conder J R. Fine mist filtration by wet filters(I): Liquid saturation and flow resistance of fibrous filters[J]. Journal of Aerosol Science, 1985, 16(6): 497-509. |
12 | Raynor P C, Leith D. The influence of accumulated liquid on fibrous filter performance[J]. Journal of Aerosol Science, 2000, 31: 19-34. |
13 | Mead-Hunter R, Braddock R D, Kampa D, et al. The relationship between pressure drop and liquid saturation in oil-mist filters—predicting filter saturation using a capillary based model[J]. Separation and Purification Technology, 2013, 104: 121-129. |
14 | Kolb H E, Meyer J, Kasper G. Flow velocity dependence of the pressure drop of oil mist filters[J]. Chemical Engineering Science, 2017, 166: 107-114. |
15 | Reed C M, Wilson N. The fundamentals of absorbency of fibers, textile structures and polymers(I): The rate of rise of a liquid in glass-capillaries[J]. Journal of Physics D: Applied Physics, 1993, 26(9): 1378-1381. |
16 | Mullins B J, Braddock R D. Capillary rise in porous, fibrous media during liquid immersion[J]. International Journal of Heat and Mass Transfer, 2012, 55: 6222-6230. |
17 | Mullins B J, Braddock R D, Kasper G. Capillarity in fibrous filter media: relationship to filter properties[J]. Chemical Engineering Science, 2007, 62: 6191-6198. |
18 | Mullins B J, Mead-Hunter R, Pitta R N, et al. Comparative performance of philic and phobic oil-mist filters[J]. AIChE Journal, 2014, 60(8): 2976-2984. |
19 | Jaganathan S, Tafreshi H V, Pourdeyhimi B. A realistic modeling of fluid in filtration in thin fibrous sheets[J]. Journal of Applied Physics, 2009, 105(11): 8. |
20 | Bredin A, Mullins B J. Influence of flow-interruption on filter performance during the filtration of liquid aerosols by fibrous filters[J]. Separation and Purification Technology, 2012, 90: 53-63. |
21 | Davies C N. Air Filtration[M]. London: Academic Press, Inc., 1973. |
22 | Bitten J F, Fochtman E G. Water bed distribution in fiber-bed coalescers[J]. Journal of Colloid and Interface Science, 1971, 37: 312-317. |
23 | Chang C, Ji Z L, Zeng F Y. The effect of a drainage layer on filtration performance of coalescing filters[J]. Separation and Purification Technology, 2016, 170: 370-376. |
24 | Chen F, Ji Z L, Qi Q Q. Effect of pore size and layers on filtration performance of coalescing filters with different wettabilities[J]. Separation and Purification Technology, 2018, 201: 71-78. |
25 | Frising T, Thomas D, Bémer D, et al. Clogging of fibrous filters by liquid aerosol particles: experimental and phenomenological modelling study[J]. Chemical Engineering Science, 2005, 60: 2751-2762. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||