CIESC Journal ›› 2021, Vol. 72 ›› Issue (3): 1322-1332.DOI: 10.11949/0438-1157.20200815
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
WANG Changliang(),TIAN Maocheng()
Received:
2020-06-22
Revised:
2020-09-04
Online:
2021-03-05
Published:
2021-03-05
Contact:
TIAN Maocheng
通讯作者:
田茂诚
作者简介:
王长亮(1994—),男,博士研究生,基金资助:
CLC Number:
WANG Changliang, TIAN Maocheng. Experimental research on low Reynolds number liquid-liquid two-phase flow and heat transfer characteristics in micro channels[J]. CIESC Journal, 2021, 72(3): 1322-1332.
王长亮, 田茂诚. 微小通道内低Reynolds数液-液两相流动与换热特性实验研究[J]. 化工学报, 2021, 72(3): 1322-1332.
Add to citation manager EndNote|Ris|BibTeX
工质 | 动力黏度/(mPa·s) | 密度/ (kg/m3) | 比热容/ (kJ/(kg·K)) | 热导率/ (W/(m·K)) | Prandtl数 |
---|---|---|---|---|---|
去离子水 | 0.89 | 998.2 | 4.179 | 0.609 | 6.22 |
二甲基硅油 | 103.4 | 963 | 1.5348 | 0.177 | 896.6 |
Table 1 Physical parameters
工质 | 动力黏度/(mPa·s) | 密度/ (kg/m3) | 比热容/ (kJ/(kg·K)) | 热导率/ (W/(m·K)) | Prandtl数 |
---|---|---|---|---|---|
去离子水 | 0.89 | 998.2 | 4.179 | 0.609 | 6.22 |
二甲基硅油 | 103.4 | 963 | 1.5348 | 0.177 | 896.6 |
文献 | 预测关联式 | 通道类型 |
---|---|---|
[ | 矩形通道 | |
[ | 矩形通道 | |
[ | 圆形通道 | |
[ | 矩形通道 |
Table 2 Empirical correlation for droplet length in liquid-liquid two-phase systems
文献 | 预测关联式 | 通道类型 |
---|---|---|
[ | 矩形通道 | |
[ | 矩形通道 | |
[ | 圆形通道 | |
[ | 矩形通道 |
1 | Qian D, Lawal A. Numerical study on gas and liquid slugs for Taylor flow in a T-junction microchannel[J]. Chem. Eng. Sci., 2006, 61(23): 7609-7625. |
2 | Yeung K L, Zhang X, Lau W N, et al. Experiments and modeling of membrane microreactors[J]. Catalysis Today, 2005, 110(1/2): 26-37. |
3 | Lang P, Hill M, Krossing I, et al. Multiphase minireactor system for direct fluorination of ethylene carbonate[J]. Chem. Eng. J., 2012, 179: 330-337. |
4 | 付涛涛, 朱春英, 王东继, 等. 微通道内气液传质特性[J]. 化工进展, 2011, 30(S2): 95-98. |
Fu T T, Zhu C Y, Wang D J, et al. Mass transfer characteristics for gas-liquid two-phase flow in microchannels[J]. Chemical Industry and Engineering Progress, 2011, 30(S2): 95-98. | |
5 | Gupta R, Fletcher D F, Haynes B S. CFD modelling of flow and heat transfer in the Taylor flow regime[J]. Chem. Eng. Sci., 2010, 65(6): 2094-2107. |
6 | 李婷, 许松林. 微通道内液-液泰勒流传热的计算流体力学模拟[J]. 化工进展, 2017, 36(6): 2078-2085. |
Li T, Xu S L. CFD simulations of heat transfer of liquid-liquid Taylor flow in microchannels[J]. Chemical Industry and Engineering Progress, 2017, 36(6): 2078-2085. | |
7 | Khan S A, Duraiswamy S. Microfluidic emulsions with dynamic compound drops[J]. Lab on a Chip, 2009, 9(13): 1840-1842. |
8 | Verma R K, Ghosh S. Effect of phase properties on liquid-liquid two-phase flow patterns and pressure drop in serpentine mini geometry[J]. Chemical Engineering Journal, 2020, 397: 125443. |
9 | 周灏, 朱春英, 付涛涛, 等. 三维孔喉结构微通道内液滴的破裂行为研究[J]. 化工学报, 2019, 70(10): 3924-3931. |
Zhou H, Zhu C Y, Fu T T, et al. Study on droplet breakup behaviors in 3-D pore-throat microchannel[J]. CIESC Journal, 2019, 70(10): 3924-3931. | |
10 | 梁倩卿, 马学虎, 王凯, 等. 矩形截面弯曲型微通道气液两相Taylor流压降的研究[J]. 化工学报, 2019, 70(4): 1272-1281. |
Liang Q Q, Ma X H, Wang K, et al. Gas-liquid Taylor flow pressure drop in rectangular meandering microchannel[J]. CIESC Journal, 2019, 70(4): 1272-1281. | |
11 | 魏丽娟, 朱春英, 付涛涛, 等. T型微通道内液滴尺寸的实验测定与关联[J]. 化工学报, 2013, 64(2): 517-523. |
Wei L J, Zhu C Y, Fu T T, et al. Experimental measurement and correlation of droplet size in T-junction microchannels[J]. CIESC Journal, 2013, 64(2): 517-523. | |
12 | Svetlov S D, Abiev R S. Formation mechanisms and lengths of the bubbles and liquid slugs in a coaxial-spherical micro mixer in Taylor flow regime[J]. Chem. Eng. J., 2018, 354: 269-284. |
13 | 张井志, 李蔚. 毛细管内气液Taylor流动的气泡及阻力特性[J]. 化工学报, 2015, 66(3): 942-948. |
Zhang J Z, Li W. Bubble and frictional characteristics of gas-liquid Taylor flow in capillary tube[J]. CIESC Journal, 2015, 66(3): 942-948. | |
14 | Dai Z, Guo Z, Fletcher D F, et al. Taylor flow heat transfer in microchannels—unification of liquid-liquid and gas-liquid results [J]. Chem. Eng. Sci., 2015, 138: 140-152. |
15 | Abdollahi A, Norris S E, Sharma R N. Fluid flow and heat transfer of liquid-liquid Taylor flow in square microchannels[J]. Appl. Therm. Eng., 2020, 172: 115123. |
16 | Leung S S Y, Liu Y, Fletcher D F, et al. Heat transfer in well-characterised Taylor flow[J]. Chem. Eng. Sci., 2010, 65(24): 6379-6388. |
17 | Majumder A, Mehta B, Khandekar S. Local Nusselt number enhancement during gas-liquid Taylor bubble flow in a square mini-channel: an experimental study[J]. Int. J. Therm. Sci., 2013, 66: 8-18. |
18 | Bandara T, Nguyen N T, Rosengarten G. Slug flow heat transfer without phase change in microchannels: a review[J]. Chem. Eng. Sci., 2015, 126: 283-295. |
19 | Mac Giolla Eain M, Egan V, Punch J. Local Nusselt number enhancements in liquid-liquid Taylor flows[J]. Int. J. Heat Mass Transf., 2015, 80: 85-97. |
20 | Che Z, Wong T N, Nguyen N T, et al. Three dimensional features of convective heat transfer in droplet-based microchannel heat sinks[J]. Int. J. Heat Mass Transf., 2015, 86: 455-464. |
21 | Jeong W J, Kim J Y, Choo J, et al. Continuous fabrication of biocatalyst immobilized microparticles using photopolymerization and immiscible liquids in microfluidic systems[J]. Langmuir, 2005, 21(9): 3738-3741. |
22 | Zhao Y, Chen G, Yuan Q. Liquid-liquid two-phase mass transfer in the T-junction microchannels[J]. AIChE Journal, 2007, 53(12): 3042-3053. |
23 | Burns J R, Ramshaw C. The intensification of rapid reactions in multiphase systems using slug flow in capillaries[J]. Lab on a Chip, 2001, 1(1): 10-15. |
24 | Sobieszuk P, Cygański P, Pohorecki R. Bubble lengths in the gas-liquid Taylor flow in microchannels[J]. Chemical Engineering Research and Design, 2010, 88(3): 263-269. |
25 | Cao Z, Wu Z, Sundén B. Dimensionless analysis on liquid-liquid flow patterns and scaling law on slug hydrodynamics in cross-junction microchannels[J]. Chem. Eng. J., 2018, 344: 604-615. |
26 | 王长亮. T型微通道内气液多相体系模拟与实验研究[D]. 郑州: 郑州大学, 2018. |
Wang C L. Numerical simulation and experimental study of gas-liquid multiphase system in T-shaped microchannels[D]. Zhengzhou: Zhengzhou University, 2018. | |
27 | Garstecki P, Fuerstman M J, Stone H A, et al. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up[J]. Lab on a Chip, 2006, 6(3): 437-446. |
28 | Li Q, Angeli P. Experimental and numerical hydrodynamic studies of ionic liquid-aqueous plug flow in small channels[J]. Chem. Eng. J., 2017, 328: 717-736. |
29 | Tsaoulidis D, Angeli P. Effect of channel size on liquid-liquid plug flow in small channels[J]. AIChE Journal, 2016, 62(1): 315-324. |
30 | Xu J H, Li S W, Tan J, et al. Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping[J]. Microfluidics and Nanofluidics, 2008, 5(6): 711-717. |
31 | Chen Y, Kulenovic R, Mertz R. Numerical study on the formation of Taylor bubbles in capillary tubes[J]. Int. J. Therm. Sci., 2009, 48(2): 234-242. |
32 | Taha T, Cui Z F. Hydrodynamics of slug flow inside capillaries[J]. Chem. Eng. Sci., 2004, 59(6): 1181-1190. |
33 | Gupta R, Leung S S Y, Manica R, et al. Hydrodynamics of liquid-liquid Taylor flow in microchannels[J]. Chem. Eng. Sci., 2013, 92: 180-189. |
34 | Asthana A, Zinovik I, Weinmueller C, et al. Significant Nusselt number increase in microchannels with a segmented flow of two immiscible liquids: an experimental study[J]. Int. J. Heat Mass Transf., 2011, 54(7/8): 1456-1464. |
35 | Suwankamnerd P, Wongwises S. An experimental study of two-phase air-water flow and heat transfer characteristics of segmented flow in a microchannel[J]. Exp. Therm. Fluid Sci., 2015, 62: 29-39. |
36 | Xu B, Wong T N, Zhang D, et al. Numerical investigation on the heat transfer characteristics of liquid-liquid plug-train in microchannels[J]. Chemical Engineering and Processing - Process Intensification, 2019, 143: 107592. |
37 | Bandara T, Chandrashekar M, Karwa N, et al. Liquid-liquid slug flow for enhanced heat transfer[C]//Proceedings of the 10th Australasian Heat and Mass Transfer Conference (AHMT2016). Brisbane, Australia, 2016: 43-49. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[3] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[4] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[5] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[6] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[7] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[8] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[9] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[10] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[11] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
[12] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[13] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[14] | Ben ZHANG, Songbai WANG, Ziya WEI, Tingting HAO, Xuehu MA, Rongfu WEN. Capillary liquid film condensation and heat transfer enhancement driven by superhydrophilic porous metal structure [J]. CIESC Journal, 2023, 74(7): 2824-2835. |
[15] | Hai WANG, Hong LIN, Chen WANG, Haojie XU, Lei ZUO, Junfeng WANG. Investigation of enhanced boiling heat transfer on porous structural surfaces by high voltage electric field [J]. CIESC Journal, 2023, 74(7): 2869-2879. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||