CIESC Journal ›› 2021, Vol. 72 ›› Issue (1): 351-365.DOI: 10.11949/0438-1157.20201043
• Reviews and monographs • Previous Articles Next Articles
WANG Kaifeng(),WANG Jinpeng,WEI Ping,JI Xiaojun()
Received:
2020-07-28
Revised:
2020-09-21
Online:
2021-01-05
Published:
2021-01-05
Contact:
JI Xiaojun
通讯作者:
纪晓俊
作者简介:
王凯峰(1996—),男,博士研究生,基金资助:
CLC Number:
WANG Kaifeng, WANG Jinpeng, WEI Ping, JI Xiaojun. Metabolic engineering of Yarrowia lipolytica to produce fatty acids and their derivatives[J]. CIESC Journal, 2021, 72(1): 351-365.
王凯峰, 王金鹏, 韦萍, 纪晓俊. 代谢工程改造解脂耶氏酵母生产脂肪酸及其衍生物[J]. 化工学报, 2021, 72(1): 351-365.
Add to citation manager EndNote|Ris|BibTeX
品类 | 脂肪酸及其衍生物 | 代谢工程改造策略 | 有益效果 | 文献 |
---|---|---|---|---|
能源化学品 | 中链脂肪酸 | 大肠杆菌来源的硫酯酶(EcTesA′)和加州月桂来源的硫酯酶(UcBTE)替换FASI中的MPT | C14和C12脂肪酸分别占总脂肪酸的29.2%和7.5% | [ |
中链脂肪酸 | 用芳香族残基代替酮酰基合酶(KS)中异亮氨酸残基I1220 | C14脂肪酸占总脂肪酸11.6% | [ | |
中链脂肪酸 | 过表达油棕来源的对中链脂肪酸有特异性的甘油三酯酰转移酶 | 中链脂肪酸占总脂肪酸45% | [ | |
脂肪酸乙酯 | 将异源的蜡酯合酶基因(AbAtfA)靶向内质网和过氧化物酶体 | 脂肪酸乙酯分别为136.5和110.9 mg/L | [ | |
脂肪酸乙酯 | 过表达异源的蜡酯合酶基因(MhAtfA),过表达柠檬酸裂解酶、乙酰辅酶A羧化酶、酿酒酵母来源的乙酰辅酶A合成酶,敲除dga1、pex10 | 外源添加5%(体积)乙醇,脂肪酸乙酯达1.18 g/L | [ | |
脂肪酸乙酯 | 表达来自酿酒酵母来源的丙酮酸脱羧酶PDC1和醇脱氢酶ADH1,表达异源的蜡酯合酶基因(MhAtfA)并将解脂耶氏酵母和酿酒酵母共培养 | 脂肪酸乙酯产量达500.4 mg /L | [ | |
烷烃 | 在高产亚油酸解脂耶氏酵母菌株中引入大豆脂氧合酶I (Gmlox1),敲除β-氧化第二步的多功能酶MFE1 | 戊烷产量达1.56 mg/L | [ | |
烷烃 | 表达海洋分枝杆菌来源的羧酸还原酶(MmCAR)、枯草芽孢杆菌来源的磷酰转移酶(BsuSfp)和海洋原绿球藻来源的醛脱甲氧合酶(PmADO) | 烷烃产量达23.3 mg/L | [ | |
材料化学品 | 蓖麻油酸 | 敲除pox1-6、Ylfad2、dga1、dga2,过表达lro1和异源Δ12油酸羟化酶(CpFAH12) | 蓖麻油酸占总脂肪酸的43% | [ |
蓖麻油酸 | 敲除pox1-6、Ylfad2、dga1、dga2, 表达2拷贝lro1和3拷贝的异源Δ12油酸羟化酶(CpFAH12) | 蓖麻油酸占总脂肪酸的60%,产量达12 g/L | [ | |
长链二元酸 | 敲除不同pox基因并添加烷烃和烷烃降解中间产物作为底物 | 十二烷二酸产量达5~20 mg/ml | [ | |
长链二元酸 | 敲除pox1-6基因之后,过表达编码NADPH细胞色素P450还原酶和细胞色素 P450单加氧酶基因 | 增加第一步羟基化活性,长链二元酸产量显著提高 | [ | |
长链二元酸 | 敲除pox1-6基因,并过表达新的醇氧化酶(FAO) | 十二烷二酸产量达11 g/L | [ | |
长链二元酸 | 基于基因组规模代谢网络模型筛选出能提高十二烷二酸产量的三种酶并过表达 | 十二烷二酸产量提高48% | [ | |
聚羟基脂肪酸酯 | 敲除油脂合成途径并过表达MFE蛋白的2-烯脂酰辅酶A水合酶结构 | PHA占细胞干重7% | [ | |
聚羟基脂肪酸酯 | 表达Ralstonia eutropha来源的编码β-酮硫解酶基因(phaA),乙酰乙酰辅酶A还原酶基因(phaB)和PHA合酶基因(phaC) | 乙酸盐作为唯一碳源,PHB占细胞干重的10.2%,达7.35 g/L | [ | |
聚羟基脂肪酸酯 | 多拷贝表达密码子优化后铜绿假单胞菌 PHA合酶 (PhaC1) | PHA占细胞干重0.205% | [ | |
聚羟基脂肪酸酯 | 表达PHA合酶(PhaC),油酸诱导型启动子POX2过表达MFE蛋白 | mclPHA占细胞干重27% | [ | |
营养化学品 | 共轭亚油酸 | 多拷贝表达经过密码子优化的痤疮丙酸杆菌来源的亚油酸异构酶基因 | 反-10,顺-12共轭亚油酸占总脂肪酸5.6% | [ |
共轭亚油酸 | 用hp16d强启动子共表达高山被孢酶来源的Δ12去饱和酶和密码子优化的痤疮丙酸杆菌来源的亚油酸异构酶基因 | 以葡萄糖和大豆油发酵,反-10,顺-12共轭亚油酸分别占总脂肪酸10%和44% | [ | |
共轭亚油酸 | 敲除pox1-6、dga1、dga2、are1和lro1,过表达内源Δ12去饱和酶和2拷贝的痤疮丙酸杆菌来源的亚油酸异构酶 | 反-10,顺-12共轭亚油酸占总脂肪酸6.5%,共轭亚油酸的降解速率明显降低 | [ | |
α-亚麻酸 | 过表达双功能镰刀菌来源的Δ15去饱和酶 | α-亚麻酸占总脂肪酸28% | [ | |
α-亚麻酸 | 在高产油酸菌株中表达3个拷贝的Rhodosporidium kratochvilovae来源的Δ15去饱和酶编码基因 | α-亚麻酸占总脂肪酸8.1%;低温发酵后占17.0%,产量达1.4g/L | [ | |
二十碳五烯酸 | 过表达胆碱酯酶(CPT),敲除pex10,导入Δ6和Δ9需氧去饱延长酶途径所需的延长酶和去饱和酶,并优化基因拷贝数 | EPA占总脂肪酸56.6%,菌株实现工业化应用 | [ | |
二十二碳六烯酸 | 过表达高山被孢霉来源的Δ4,Δ5,Δ6,Δ7去饱和酶、C18~C20延长酶,以及Thraustochytrium aureum来源的C20~C22延长酶 | DHA占总脂肪酸5.6% | [ | |
二十二碳六烯酸 | 表达经过密码子优化后的4′-磷酸泛乙烯基转移酶和长链多不饱和脂肪酸合成酶基因簇 | DHA占总脂肪酸10.5% | [ | |
γ-亚麻酸 | 表达密码子优化高山孢霉来源的Δ6去饱和酶 | γ-亚麻酸占总脂肪酸6.1% | [ | |
花生四烯酸 | 表达密码子优化高山被饱霉来源的Δ6去饱和酶、Δ6延长酶和Δ5去饱和酶 | 花生四烯酸产占总脂肪酸0.4% | [ | |
花生四烯酸 | 融合表达Δ9延长酶和Δ8去饱和酶,并过表达Δ5去饱和酶 | 花生四烯酸产量达118.1mg/L | [ | |
其他化学品 | 奇数链脂肪酸 | 敲除2-甲基柠檬酸脱水酶(PHD1),葡萄糖与丙酸盐共培养 | 奇数链脂肪酸产量达0.75 g/L | [ |
奇数链脂肪酸 | 敲除POX1-6、脂肪酶(TGL4)、过表达二酰甘油酰基转移酶(DGA2)和3-磷酸甘油脱氢酶(GPD1),过表达苏氨酸的生物合成途径相关的7个基因,葡萄糖为唯一碳源 | 奇数链脂肪酸占总脂肪酸5.64% | [ | |
脂肪醇 | 过表达Synechococcus elongatus来源的脂酰ACP还原酶(SeFAR)和大肠杆菌来源的醛还原酶(EcAHR) | 脂肪醇产量达2.5 mg/L | [ | |
脂肪醇 | 过表达Marinobacter aquaeolei来源的脂酰辅酶A还原酶(MaQu2220)和大肠杆菌来源的脂酰辅酶A合成酶(EcFadD) | 脂肪醇产量达205.4 mg/L | [ | |
脂肪醇 | 敲除脂肪醇氧化酶(FAO1)、DGA1、过表达5个拷贝猫头鹰来源的脂酰辅酶A还原酶(TaFAR)基因 | 细胞内十六醇产量达636.89 mg/L;细胞外十六醇产量达53.32 mg/L | [ | |
脂肪醇 | 过表达脂酰辅酶A还原酶和去饱和酶(OLE1),敲除与脂肪醇竞争的13个基因 | 脂肪醇产量达5.75 g/L | [ | |
脂肪醇 | 过表达拟南芥来源的脂酰辅酶A还原酶,敲除PEX10 | 1-癸醇产量达500 mg/L | [ | |
脂肪醇 | 过表达异源的脂酰辅酶A还原酶(MhFAR) | 脂肪醇产量达5.8 g/L,在高产α-亚麻酸菌株中亚麻油醇产量达2 mg/L | [ |
Table 1 Metabolic engineering strategies to produce the tailored fatty acids and their derivatives in Yarrowia lipolitica
品类 | 脂肪酸及其衍生物 | 代谢工程改造策略 | 有益效果 | 文献 |
---|---|---|---|---|
能源化学品 | 中链脂肪酸 | 大肠杆菌来源的硫酯酶(EcTesA′)和加州月桂来源的硫酯酶(UcBTE)替换FASI中的MPT | C14和C12脂肪酸分别占总脂肪酸的29.2%和7.5% | [ |
中链脂肪酸 | 用芳香族残基代替酮酰基合酶(KS)中异亮氨酸残基I1220 | C14脂肪酸占总脂肪酸11.6% | [ | |
中链脂肪酸 | 过表达油棕来源的对中链脂肪酸有特异性的甘油三酯酰转移酶 | 中链脂肪酸占总脂肪酸45% | [ | |
脂肪酸乙酯 | 将异源的蜡酯合酶基因(AbAtfA)靶向内质网和过氧化物酶体 | 脂肪酸乙酯分别为136.5和110.9 mg/L | [ | |
脂肪酸乙酯 | 过表达异源的蜡酯合酶基因(MhAtfA),过表达柠檬酸裂解酶、乙酰辅酶A羧化酶、酿酒酵母来源的乙酰辅酶A合成酶,敲除dga1、pex10 | 外源添加5%(体积)乙醇,脂肪酸乙酯达1.18 g/L | [ | |
脂肪酸乙酯 | 表达来自酿酒酵母来源的丙酮酸脱羧酶PDC1和醇脱氢酶ADH1,表达异源的蜡酯合酶基因(MhAtfA)并将解脂耶氏酵母和酿酒酵母共培养 | 脂肪酸乙酯产量达500.4 mg /L | [ | |
烷烃 | 在高产亚油酸解脂耶氏酵母菌株中引入大豆脂氧合酶I (Gmlox1),敲除β-氧化第二步的多功能酶MFE1 | 戊烷产量达1.56 mg/L | [ | |
烷烃 | 表达海洋分枝杆菌来源的羧酸还原酶(MmCAR)、枯草芽孢杆菌来源的磷酰转移酶(BsuSfp)和海洋原绿球藻来源的醛脱甲氧合酶(PmADO) | 烷烃产量达23.3 mg/L | [ | |
材料化学品 | 蓖麻油酸 | 敲除pox1-6、Ylfad2、dga1、dga2,过表达lro1和异源Δ12油酸羟化酶(CpFAH12) | 蓖麻油酸占总脂肪酸的43% | [ |
蓖麻油酸 | 敲除pox1-6、Ylfad2、dga1、dga2, 表达2拷贝lro1和3拷贝的异源Δ12油酸羟化酶(CpFAH12) | 蓖麻油酸占总脂肪酸的60%,产量达12 g/L | [ | |
长链二元酸 | 敲除不同pox基因并添加烷烃和烷烃降解中间产物作为底物 | 十二烷二酸产量达5~20 mg/ml | [ | |
长链二元酸 | 敲除pox1-6基因之后,过表达编码NADPH细胞色素P450还原酶和细胞色素 P450单加氧酶基因 | 增加第一步羟基化活性,长链二元酸产量显著提高 | [ | |
长链二元酸 | 敲除pox1-6基因,并过表达新的醇氧化酶(FAO) | 十二烷二酸产量达11 g/L | [ | |
长链二元酸 | 基于基因组规模代谢网络模型筛选出能提高十二烷二酸产量的三种酶并过表达 | 十二烷二酸产量提高48% | [ | |
聚羟基脂肪酸酯 | 敲除油脂合成途径并过表达MFE蛋白的2-烯脂酰辅酶A水合酶结构 | PHA占细胞干重7% | [ | |
聚羟基脂肪酸酯 | 表达Ralstonia eutropha来源的编码β-酮硫解酶基因(phaA),乙酰乙酰辅酶A还原酶基因(phaB)和PHA合酶基因(phaC) | 乙酸盐作为唯一碳源,PHB占细胞干重的10.2%,达7.35 g/L | [ | |
聚羟基脂肪酸酯 | 多拷贝表达密码子优化后铜绿假单胞菌 PHA合酶 (PhaC1) | PHA占细胞干重0.205% | [ | |
聚羟基脂肪酸酯 | 表达PHA合酶(PhaC),油酸诱导型启动子POX2过表达MFE蛋白 | mclPHA占细胞干重27% | [ | |
营养化学品 | 共轭亚油酸 | 多拷贝表达经过密码子优化的痤疮丙酸杆菌来源的亚油酸异构酶基因 | 反-10,顺-12共轭亚油酸占总脂肪酸5.6% | [ |
共轭亚油酸 | 用hp16d强启动子共表达高山被孢酶来源的Δ12去饱和酶和密码子优化的痤疮丙酸杆菌来源的亚油酸异构酶基因 | 以葡萄糖和大豆油发酵,反-10,顺-12共轭亚油酸分别占总脂肪酸10%和44% | [ | |
共轭亚油酸 | 敲除pox1-6、dga1、dga2、are1和lro1,过表达内源Δ12去饱和酶和2拷贝的痤疮丙酸杆菌来源的亚油酸异构酶 | 反-10,顺-12共轭亚油酸占总脂肪酸6.5%,共轭亚油酸的降解速率明显降低 | [ | |
α-亚麻酸 | 过表达双功能镰刀菌来源的Δ15去饱和酶 | α-亚麻酸占总脂肪酸28% | [ | |
α-亚麻酸 | 在高产油酸菌株中表达3个拷贝的Rhodosporidium kratochvilovae来源的Δ15去饱和酶编码基因 | α-亚麻酸占总脂肪酸8.1%;低温发酵后占17.0%,产量达1.4g/L | [ | |
二十碳五烯酸 | 过表达胆碱酯酶(CPT),敲除pex10,导入Δ6和Δ9需氧去饱延长酶途径所需的延长酶和去饱和酶,并优化基因拷贝数 | EPA占总脂肪酸56.6%,菌株实现工业化应用 | [ | |
二十二碳六烯酸 | 过表达高山被孢霉来源的Δ4,Δ5,Δ6,Δ7去饱和酶、C18~C20延长酶,以及Thraustochytrium aureum来源的C20~C22延长酶 | DHA占总脂肪酸5.6% | [ | |
二十二碳六烯酸 | 表达经过密码子优化后的4′-磷酸泛乙烯基转移酶和长链多不饱和脂肪酸合成酶基因簇 | DHA占总脂肪酸10.5% | [ | |
γ-亚麻酸 | 表达密码子优化高山孢霉来源的Δ6去饱和酶 | γ-亚麻酸占总脂肪酸6.1% | [ | |
花生四烯酸 | 表达密码子优化高山被饱霉来源的Δ6去饱和酶、Δ6延长酶和Δ5去饱和酶 | 花生四烯酸产占总脂肪酸0.4% | [ | |
花生四烯酸 | 融合表达Δ9延长酶和Δ8去饱和酶,并过表达Δ5去饱和酶 | 花生四烯酸产量达118.1mg/L | [ | |
其他化学品 | 奇数链脂肪酸 | 敲除2-甲基柠檬酸脱水酶(PHD1),葡萄糖与丙酸盐共培养 | 奇数链脂肪酸产量达0.75 g/L | [ |
奇数链脂肪酸 | 敲除POX1-6、脂肪酶(TGL4)、过表达二酰甘油酰基转移酶(DGA2)和3-磷酸甘油脱氢酶(GPD1),过表达苏氨酸的生物合成途径相关的7个基因,葡萄糖为唯一碳源 | 奇数链脂肪酸占总脂肪酸5.64% | [ | |
脂肪醇 | 过表达Synechococcus elongatus来源的脂酰ACP还原酶(SeFAR)和大肠杆菌来源的醛还原酶(EcAHR) | 脂肪醇产量达2.5 mg/L | [ | |
脂肪醇 | 过表达Marinobacter aquaeolei来源的脂酰辅酶A还原酶(MaQu2220)和大肠杆菌来源的脂酰辅酶A合成酶(EcFadD) | 脂肪醇产量达205.4 mg/L | [ | |
脂肪醇 | 敲除脂肪醇氧化酶(FAO1)、DGA1、过表达5个拷贝猫头鹰来源的脂酰辅酶A还原酶(TaFAR)基因 | 细胞内十六醇产量达636.89 mg/L;细胞外十六醇产量达53.32 mg/L | [ | |
脂肪醇 | 过表达脂酰辅酶A还原酶和去饱和酶(OLE1),敲除与脂肪醇竞争的13个基因 | 脂肪醇产量达5.75 g/L | [ | |
脂肪醇 | 过表达拟南芥来源的脂酰辅酶A还原酶,敲除PEX10 | 1-癸醇产量达500 mg/L | [ | |
脂肪醇 | 过表达异源的脂酰辅酶A还原酶(MhFAR) | 脂肪醇产量达5.8 g/L,在高产α-亚麻酸菌株中亚麻油醇产量达2 mg/L | [ |
1 | 谭天伟, 苏海佳, 陈必强, 等. 绿色生物制造 [J]. 北京化工大学学报(自然科学版), 2018, 45(5): 111-122. |
Tan T W, Su H J, Chen B Q, et al. Green bio-manufacturing[J]. Journal of Beijing University of Chemical Technology (Natural Science), 2018, 45(5): 107-118. | |
2 | Ledesma-Amaro R. Microbial oils: a customizable feedstock through metabolic engineering [J]. European Journal of Lipid Science and Technology, 2015, 117(2): 141-144. |
3 | Wang J, Ledesma-Amaro R, Wei Y, et al. Metabolic engineering for increased lipid accumulation in Yarrowia lipolytica — a review [J]. Bioresource Technology, 2020, 313: 123707. |
4 | Zhu Z, Hu Y, Teixeira P G, et al. Multidimensional engineering of Saccharomyces cerevisiae for efficient synthesis of medium-chain fatty acids [J]. Nature Catalysis, 2020, 3(1): 64-74. |
5 | Zhu Z, Zhou Y J, Krivoruchko A, et al. Expanding the product portfolio of fungal type I fatty acid synthases [J]. Nature Chemical Biology, 2017, 13(4): 360-362. |
6 | Zhou Y J, Buijs N A, Zhu Z, et al. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories [J]. Nature Communications, 2016, 7: 11709. |
7 | Zhou Y J, Buijs N A, Zhu Z, et al. Harnessing yeast peroxisomes for biosynthesis of fatty acid-derived biofuels and chemicals with relieved side-pathway competition [J]. Journal of the American Chemical Society, 2016, 138(47): 15368-15377. |
8 | Yu T, Zhou Y J, Huang M, et al. Reprogramming yeast metabolism from alcoholic fermentation to lipogenesis [J]. Cell, 2018, 174(6): 1549-1558. |
9 | Yu X, Liu T, Zhu F, et al. In vitro reconstitution and steady-state analysis of the fatty acid synthase from Escherichia coli [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(46): 18643-18648. |
10 | Li X, Guo D, Cheng Y, et al. Overproduction of fatty acids in engineered Saccharomyces cerevisiae [J]. Biotechnology and Bioengineering, 2014, 111(9): 1841-1852. |
11 | Liu T, Vora H, Khosla C. Quantitative analysis and engineering of fatty acid biosynthesis in E. coli [J]. Metabolic Engineering, 2010, 12: 378-386 |
12 | Xu P, Li L, Zhang F, et al. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(31): 11299-11304. |
13 | Xu P, Qiao K, Stephanopoulos G. Engineering oxidative stress defense pathways to build a robust lipid production platform in Yarrowia lipolytica [J]. Biotechnology and Bioengineering, 2017, 114(7): 1521-1530. |
14 | Groenewald M, Boekhout T, Neuveglise C, et al. Yarrowia lipolytica: safety assessment of an oleaginous yeast with a great industrial potential [J]. Critical Reviews in Microbiology, 2014, 40(3): 187-206. |
15 | Larroude M, Rossignol T, Nicaud J M, et al. Synthetic biology tools for engineering Yarrowia lipolytica[J]. Biotechnology Advances, 2018, 36(8): 2150-2164. |
16 | Ma Y, Wang K, Wang W, et al. Advances in the metabolic engineering of Yarrowia lipolytica for the production of terpenoids [J]. Bioresource Technology, 2019, 281: 449-456. |
17 | Muhammad A, Feng X, Rasool A, et al. Production of plant natural products through engineered Yarrowia lipolytica [J]. Biotechnology Advances, 2020, 43: 107555. |
18 | Lv Y, Qian S, Du G, et al. Coupling feedback genetic circuits with growth phenotype for dynamic population control and intelligent bioproduction [J]. Metabolic Engineering, 2019, 54: 109-116. |
19 | Lv Y, Marsafari M, Koffas M, et al. Optimizing oleaginous yeast cell factories for flavonoids and hydroxylated flavonoids biosynthesis [J]. ACS Synthetic Biology, 2019, 8(11): 2514-2523. |
20 | Markham K A, Palmer C M, Chwatko M, et al. Rewiring Yarrowia lipolytica toward triacetic acid lactone for materials generation [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(9): 2096-2101. |
21 | Yan J, Han B, Gui X, et al. Engineering Yarrowia lipolytica to simultaneously produce lipase and single cell protein from agro-industrial wastes for feed [J]. Scientific Reports, 2018, 8(1): 758. |
22 | Liu H H, Ji X J, Huang H. Biotechnological applications of Yarrowia lipolytica: past, present and future [J]. Biotechnology Advances, 2015, 33(8): 1522-1546. |
23 | Shi T Q, Huang H, Kerkhoven E J, et al. Advancing metabolic engineering of Yarrowia lipolytica using the CRISPR/Cas system [J]. Applied Microbiology and Biotechnology, 2018, 102(22): 9541-9548. |
24 | Ganesan V, Spagnuolo M, Agrawal A, et al. Advances and opportunities in gene editing and gene regulation technology for Yarrowia lipolytica [J]. Microbial Cell Factories, 2019, 18(1): 208. |
25 | Abdel-Mawgoud A M, Markham K A, Palmer C M, et al. Metabolic engineering in the host Yarrowia lipolytica [J]. Metabolic Engineering, 2018, 50: 192-208. |
26 | Markham K A, Alper H S. Synthetic biology expands the industrial potential of Yarrowia lipolytica [J]. Trends in Biotechnology, 2018, 36(10): 1085-1095. |
27 | Tai M, Stephanopoulos G. Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production [J]. Metabolic Engineering, 2013, 15(15): 1-9. |
28 | Madzak C, Treton B, Blanchinroland S, et al. Strong hybrid promoters and integrative expression/secretion vectors for quasi-constitutive expression of heterologous proteins in the yeast Yarrowia lipolytica [J]. Journal of Molecular Microbiology and Biotechnology, 2000, 2(2): 207-216. |
29 | Blazeck J, Liu L, Redden H, et al. Tuning gene expression in Yarrowia lipolytica by a hybrid promoter approach [J]. Applied and Environmental Microbiology, 2011, 77(22): 7905-7914. |
30 | Trassaert M, Vandermies M, Carly F, et al. New inducible promoter for gene expression and synthetic biology in Yarrowia lipolytica [J]. Microbial Cell Factories, 2017, 16(1): 141. |
31 | Ding Y, Wang K F, Wang W J, et al. Increasing the homologous recombination efficiency of eukaryotic microorganisms for enhanced genome engineering [J]. Applied Microbiology and Biotechnology, 2019, 103(11): 4313-4324. |
32 | Madzak C, Gaillardin C, Beckerich J, et al. Heterologous protein expression and secretion in the non-conventional yeast Yarrowia lipolytica: a review [J]. Journal of Biotechnology, 2004, 109(1): 63-81. |
33 | Holkenbrink C, Dam M I, Kildegaard K R, et al. EasyCloneYALI: CRISPR/Cas9‐based synthetic toolbox for engineering of the yeast Yarrowia lipolytica [J]. Biotechnology Journal, 2018, 13(9): e1700543. |
34 | Lv Y, Edwards H, Zhou J, et al. Combining 26s rDNA and the Cre-loxP system for iterative gene integration and efficient marker curation in Yarrowia lipolytica [J]. ACS Synthetic Biology, 2019, 8(3): 568-576. |
35 | Dall M T, Nicaud J, Gaillardin C, et al. Multiple-copy integration in the yeast Yarrowia lipolytica [J]. Current Genetics, 1994, 26(1): 38-44. |
36 | Ledesma-Amaro R, Nicaud J. Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids [J]. Progress in Lipid Research, 2016, 61: 40-50. |
37 | Tehlivets O, Scheuringer K, Kohlwein S D, et al. Fatty acid synthesis and elongation in yeast [J]. Biochimica et Biophysica Acta, 2007, 1771(3): 255-270. |
38 | Athenstaedt K. YALI0E32769g (DGA1) and YALI0E16797g (LRO1) encode major triacylglycerol synthases of the oleaginous yeast Yarrowia lipolytica [J]. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 2011, 1811(10): 587-596. |
39 | Xu P, Qiao K, Ahn W S, et al. Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(39): 10848-10853. |
40 | Landriscina C, Gnoni G V, Quagliariello E. Fatty‐acid biosynthesis [J]. European Journal of Biochemistry, 1972, 29(1): 188–196. |
41 | Wettstein-Knowles P V, Olsen J G, Mcguire K A, et al. Fatty acid synthesis. Role of active site histidines and lysine in Cys-His-His-type beta-ketoacyl-acyl carrier protein synthases [J]. FEBS Journal, 2010, 273(4): 695-710. |
42 | Leibundgut M, Maier T, Jenni S, et al. The multienzyme architecture of eukaryotic fatty acid synthases [J]. Current Opinion in Structural Biology, 2008, 18(6): 714-725. |
43 | Jing F, Cantu D C, Tvaruzkova J, et al. Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity [J]. BMC Biochemistry, 2011, 12(1): 44. |
44 | Moreno-Pérez A J, Venegas-Calerón M, Vaistij F E, et al. Reduced expression of FatA thioesterases in Arabidopsis affects the oil content and fatty acid composition of the seeds [J]. Planta, 2012, 235(3): 629-639. |
45 | Sherkhanov S, Korman T P, Bowie J U, et al. Improving the tolerance of Escherichia coli to medium-chain fatty acid production [J]. Metabolic Engineering, 2014, 25: 1-7. |
46 | Steen E J, Kang Y, Bokinsky G, et al. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass [J]. Nature, 2010, 463(7280): 559-562. |
47 | Rutter C D, Zhang S, Rao C V, et al. Engineering Yarrowia lipolytica for production of medium-chain fatty acids [J]. Applied Microbiology and Biotechnology, 2015, 99(17): 7359-7368. |
48 | Rigouin C, Gueroult M, Croux C, et al. Production of medium chain fatty acids by Yarrowia lipolytica: combining molecular design and TALEN to engineer the fatty acid synthase [J]. ACS Synthetic Biology, 2017, 6(10): 1870-1879. |
49 | Rigouin C, Croux C, Borsenberger V, et al. Increasing medium chain fatty acids production in Yarrowia lipolytica by metabolic engineering [J]. Microbial Cell Factories, 2018, 17(1): 1-12. |
50 | Han L, Han D, Li L, et al. Discovery and identification of medium‐chain fatty acid responsive promoters in Saccharomyces cerevisiae [J]. Engineering in Life Sciences, 2020, 20(5/6): 186-196. |
51 | Lee S K, Chou H H, Ham T S, et al. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels [J]. Current Opinion in Biotechnology, 2008, 19(6): 556-563. |
52 | Shi S, Valle‐Rodríguez J O, Siewers V, et al. Engineering of chromosomal wax ester synthase integrated Saccharomyces cerevisiae mutants for improved biosynthesis of fatty acid ethyl esters [J]. Biotechnology and Bioengineering, 2014, 111(9): 1740-1747. |
53 | Yu K O, Jung J, Kim S W, et al. Synthesis of FAEEs from glycerol in engineered Saccharomyces cerevisiae using endogenously produced ethanol by heterologous expression of an unspecific bacterial acyltransferase [J]. Biotechnology and Bioengineering, 2012, 109(1): 110-115. |
54 | Gao Q, Cao X, Huang Y Y, et al. Overproduction of fatty acid ethyl esters by the oleaginous yeast Yarrowia lipolytica through metabolic engineering and process optimization [J]. ACS Synthetic Biology, 2018, 7(5): 1371-1380. |
55 | Yu A, Zhao Y, Li J, et al. Sustainable production of FAEE biodiesel using the oleaginous yeast Yarrowia lipolytica [J]. Microbiologyopen, 2020, 9(7): e1051. |
56 | Schirmer A, Rude M, Li X, et al. Microbial biosynthesis of alkanes [J]. Science, 2010, 329(5991): 559-562. |
57 | Beopoulos A, Mrozova Z, Dall M L, et al. Control of lipid accumulation in the yeast Yarrowia lipolytica [J]. Applied and Environmental Microbiology, 2008, 74(24): 7779-7789. |
58 | Blazeck J, Liu L, Knight R, et al. Heterologous production of pentane in the oleaginous yeast Yarrowia lipolytica [J]. Journal of Biotechnology, 2013, 165(3): 184-194. |
59 | Mutlu H, Meier M A R. Castor oil as a renewable resource for the chemical industry [J]. European Journal of Lipid Science and Technology, 2010, 112(1): 10-30. |
60 | Ogunniyi D S. Castor oil: a vital industrial raw material [J]. Bioresource Technology, 2006, 97(9): 1086-1091. |
61 | Mubofu E B. Castor oil as a potential renewable resource for the production of functional materials [J]. Sustainable Chemical Processes, 2016, 4(1): 11. |
62 | Knight B. Ricin—a potent homicidal poison [J]. British Medical Journal, 1979, 1(6159): 350-351. |
63 | Dahlke B, Hellbardt S, Paetow M, et al. Polyhydroxy fatty acids and their derivatives from plant oils [J]. Journal of the American Oil Chemists' Society, 1995, 72(3): 349-353. |
64 | Burgal J, Shockey J, Lu C, et al. Metabolic engineering of hydroxy fatty acid production in plants: RcDGAT2 drives dramatic increases in ricinoleate levels in seed oil [J]. Plant Biotechnology Journal, 2018, 6(8): 819-831. |
65 | Meesapyodsuk D, Chen Y, Ng S H, et al. Metabolic engineering of Pichia pastoris to produce ricinoleic acid, a hydroxy fatty acid of industrial importance [J]. Journal of Lipid Research, 2015, 56(11): 2102-2109. |
66 | Holic R, Yazawa H, Kumagai H, et al. Engineered high content of ricinoleic acid in fission yeast Schizosaccharomyces pombe [J]. Applied Microbiology and Biotechnology, 2012, 95(1): 179-187. |
67 | Tsakraklides V, Kamineni A, Consiglio A L, et al. High-oleate yeast oil without polyunsaturated fatty acids [J]. Biotechnology for Biofuels, 2018, 11(1): 131. |
68 | Beopoulos A, Verbeke J, Bordes F, et al. Metabolic engineering for ricinoleic acid production in the oleaginous yeast Yarrowia lipolytica [J]. Applied Microbiology and Biotechnology, 2014, 98(1): 251-262. |
69 | Smit M S, Mokgoro M M, Setati E, et al. α, ω-Dicarboxylic acid accumulation by acyl-CoA oxidase deficient mutants of Yarrowia lipolytica [J]. Biotechnology Letters, 2005, 27(12): 859-864. |
70 | Thevenieau F. Metabolic engineering of the yeast Yarrowia lipolytica for the production of long-chain dicarboxylic acids from renewable oil feedstock[D]. Paris: Institut National Agronomique Paris-Grignon, 2006. |
71 | Picataggio S, Rohrer T, Deanda K, et al. Metabolic engineering of Candida tropicalis for the production of long–chain dicarboxylic acids [J]. Nature Biotechnology, 1992, 10(8): 894-898. |
72 | Gatter M, Förster A, Bär K, et al. A newly identified fatty alcohol oxidase gene is mainly responsible for the oxidation of long-chain ω-hydroxy fatty acids in Yarrowia lipolytica [J]. FEMS Yeast Research, 2014, 14(6): 858-872. |
73 | Mishra P, Lee N, Lakshmanan M, et al. Genome-scale model-driven strain design for dicarboxylic acid production in Yarrowia lipolytica [J]. BMC Systems Biology, 2018, 12(2): 9-20. |
74 | Rehm B H A. Biogenesis of microbial polyhydroxyalkanoate granules: a platform technology for the production of tailor-made bioparticles [J]. Current Issues in Molecular Biology, 2007, 9(1): 41-62. |
75 | Madison L L, Huisman G W. Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic [J]. Microbiology and Molecular Biology Reviews, 1999, 63(1): 21-53. |
76 | Haddouche R, Poirier Y, Delessert S, et al. Engineering polyhydroxyalkanoate content and monomer composition in the oleaginous yeast Yarrowia lipolytica by modifying the ß-oxidation multifunctional protein [J]. Applied Microbiology and Biotechnology, 2011, 91: 1327–1340. |
77 | Li Z J, Qiao K, Liu N, et al. Engineering Yarrowia lipolytica for poly-3-hydroxybutyrate production [J]. Journal of Industrial Microbiology & Biotechnology, 2017, 44(4/5): 605-612. |
78 | Rigouin C, Lajus S, Ocando C, et al. Production and characterization of two medium-chain-length polydroxyalkanoates by engineered strains of Yarrowia lipolytica [J]. Microbial Cell Factories, 2019, 18: 99. |
79 | Gao C, Qi Q, Madzak C, et al. Exploring medium-chain-length polyhydroxyalkanoates production in the engineered yeast Yarrowia lipolytica [J]. Journal of Industrial Microbiology & Biotechnology, 2015, 42(9): 1255-1262. |
80 | Haddouche R, Delessert S, Sabirova J, et al. Roles of multiple acyl-CoA oxidases in the routing of carbon flow towards β-oxidation and polyhydroxyalkanoate biosynthesis in Yarrowia lipolytica [J]. FEMS Yeast Research, 2010, 10(7): 917-927. |
81 | Gong M, Hu Y, Wei W, et al. Production of conjugated fatty acids: a review of recent advances [J]. Biotechnology Advances, 2019, 37: 107454. |
82 | Peng S S, Deng M D, Grund A D, et al. Purification and characterization of a membrane-bound linoleic acid isomerase from Clostridium sporogenes [J]. Enzyme and Microbial Technology, 2007, 40(4): 831-839. |
83 | Zhang B, Rong C, Chen H, et al. De novo synthesis of trans-10, cis-12 conjugated linoleic acid in oleaginous yeast Yarrowia lipolytica [J]. Microbial Cell Factories, 2012, 11: 51. |
84 | Zhang B, Chen H, Li M, et al. Genetic engineering of Yarrowia lipolytica for enhanced production of trans-10, cis-12 conjugated linoleic acid [J]. Microbial Cell Factories, 2013, 12: 70. |
85 | Imatoukene N, Verbeke J, Beopoulos A, et al. A metabolic engineering strategy for producing conjugated linoleic acids using the oleaginous yeast Yarrowia lipolytica [J]. Applied Microbiology and Biotechnology, 2017, 101(9): 4605-4616. |
86 | Ji X J, Huang H. Engineering microbes to produce polyunsaturated fatty acids [J]. Trends in Biotechnology, 2019, 37(4): 344-346. |
87 | Ji X J, Ledesma-Amaro R. Microbial lipid biotechnology to produce polyunsaturated fatty acids [J]. Trends in Biotechnology, 2020, 38(8): 832-834. |
88 | Damude H G, Zhang H, Farrall L, et al. Identification of bifunctional ω12/ω3 fatty acid desaturases for improving the ratio of ω3 to ω6 fatty acids in microbes and plants [J]. Proceedings of the National Academy of Sciences, 2006, 103(25): 9446-9451. |
89 | Cordova L T, Alper H S. Production of α-linolenic acid in Yarrowia lipolytica using low-temperature fermentation [J]. Applied Microbiology and Biotechnology, 2018, 102(20): 8809-8816. |
90 | Tezaki S, Iwama R, Kobayashi S, et al. Δ12-fatty acid desaturase is involved in growth at low temperature in yeast Yarrowia lipolytica [J]. Biochemical and Biophysical Research Communications, 2017, 488(1): 165-170. |
91 | Gemperlein K, Rachid S, Garcia R O, et al. Polyunsaturated fatty acid biosynthesis in myxobacteria: different PUFA synthases and their product diversity [J]. Chemical Science, 2014, 5(5): 1733. |
92 | Xue Z, Sharpe P L, Hong S, et al. Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica [J]. Nature Biotechnology, 2013, 31(8): 734-740. |
93 | Xie D, Jackson E N, Zhu Q Q, et al. Sustainable source of omega-3 eicosapentaenoic acid from metabolically engineered Yarrowia lipolytica: from fundamental research to commercial production [J]. Applied Microbiology and Biotechnology, 2015, 99(4): 1599-1610. |
94 | Damude H G, Gillies P J, Macool D J, et al. Docosahexaenoic acid producing strains of Yarrowia lipolytica: US8685682B2[P]. 2004-11-04. |
95 | Gemperlein K, Dietrich D, Kohlstedt M, et al. Polyunsaturated fatty acid production by Yarrowia lipolytica employing designed myxobacterial PUFA synthases [J]. Nature Communications, 2019, 10: 4055. |
96 | Ji X J, Ren L J, Nie Z K, et al. Fungal arachidonic acid-rich oil: research, development and industrialization [J]. Critical Reviews in Biotechnology, 2014, 34(3): 197-214. |
97 | Sun M L, Madzak C, Liu H H, et al. Engineering Yarrowia lipolytica for efficient γ-linolenic acid production [J]. Biochemical Engineering Journal, 2017, 117: 172-180. |
98 | Liu H H, Madzak C, Sun M L, et al. Engineering Yarrowia lipolytica for arachidonic acid production through rapid assembly of metabolic pathway [J]. Biochemical Engineering Journal, 2017, 119: 52-58. |
99 | Liu H H, Zeng S Y, Shi T Q, et al. A Yarrowia lipolytica strain engineered for arachidonic acid production counteracts metabolic burden by redirecting carbon flux towards intracellular fatty acid accumulation at the expense of organic acids secretion[J]. Biochemical Engineering Journal, 2017, 128: 201-209. |
100 | Liu H H, Wang C, Lu X Y, et al. Improved production of arachidonic acid by combined pathway engineering and synthetic enzyme fusion in Yarrowia lipolytica [J]. Journal of Agricultural and Food Chemistry, 2019, 67(35): 9851-9857. |
101 | Bourel G, Nicaud J, Nthangeni B, et al. Fatty acid hydroperoxide lyase of green bell pepper: cloning in Yarrowia lipolytica and biogenesis of volatile aldehydes [J]. Enzyme and Microbial Technology, 2004, 35(4): 293-299. |
102 | Braga A, Belo I. Biotechnological production of γ-decalactone, a peach like aroma, by Yarrowia lipolytica[J]. World Journal of Microbiology and Biotechnology, 2016, 32: 169. |
103 | Zhang L S, Liang S, Zong M H, et al. Microbial synthesis of functional odd-chain fatty acids: a review [J]. World Journal of Microbiology and Biotechnology, 2020, 36(3): 1-9. |
104 | Degwert J, Jacob J, Steckel F, et al. Use of cis‑9‑heptadecenoic acid for treating psoriasis and allergies: US5708028A[P]. 1993-03-25. |
105 | Jenkins B, West J A, Koulman A. A review of odd-chain fatty acid metabolism and the role of pentadecanoic acid (C15: 0) and heptadecanoic acid (C17: 0) in health and disease [J]. Molecules, 2015, 20(2): 2425-2444. |
106 | Knothe G. Improving biodiesel fuel properties by modifying fatty ester composition [J]. Energy and Environmental Science, 2009, 2(7): 759-766. |
107 | Park Y K, Dulermo T, Ledesma-Amaro R, et al. Optimization of odd chain fatty acid production by Yarrowia lipolytica [J]. Biotechnology for Biofuels, 23018, 11: 158. |
108 | Park Y, Ledesma-Amaro R, Nicaud J. De novo biosynthesis of odd-chain fatty acids in Yarrowia lipolytica enabled by modular pathway engineering [J]. Frontiers in Bioengineering and Biotechnology, 2020, 7: 484. |
109 | Wang G, Xiong X, Ghogare R, et al. Exploring fatty alcohol-producing capability of Yarrowia lipolytica [J]. Biotechnology for Biofuels, 2016, 9: 107. |
110 | Zhang J L, Cao Y X, Peng Y Z, et al. High production of fatty alcohols in Yarrowia lipolytica by coordination with glycolysis [J]. Science China Chemistry, 2019, 62(8): 1007-1016. |
111 | Rutter C D, Rao C V. Production of 1-decanol by metabolically engineered Yarrowia lipolytica [J]. Metabolic Engineering, 2016, 38: 139-147. |
112 | Cordova L T, Butler J, Alper H S. Direct production of fatty alcohols from glucose using engineered strains of Yarrowia lipolytica [J]. Metabolic Engineering Communications, 2020, 10: e00105. |
[1] | Chunlei ZHAO, Liang GUO, Cong GAO, Wei SONG, Jing WU, Jia LIU, Liming LIU, Xiulai CHEN. Metabolic engineering of Escherichia coli for chondroitin production [J]. CIESC Journal, 2023, 74(5): 2111-2122. |
[2] | Xin LIU, Jun GE, Chun LI. Light-driven microbial hybrid systems improve level of biomanufacturing [J]. CIESC Journal, 2023, 74(1): 330-341. |
[3] | Xue LIU, Lijuan ZHANG, Guangrong ZHAO. Commensalistic Escherichia coli coculture for biosynthesis of daidzein [J]. CIESC Journal, 2022, 73(9): 4015-4024. |
[4] | Caifeng LI, Xiao WANG, Gangjian LI, Junzhang LIN, Weidong WANG, Qinglin SHU, Yanbin CAO, Meng XIAO. Synergistic relationship between hydrocarbon degrading and emulsifying strain SL-1 and endogenous bacteria during oil displacement [J]. CIESC Journal, 2022, 73(9): 4095-4102. |
[5] | Jiaren ZHANG, Haichao LIU. Phase equilibrium of transesterification reaction system between soybean oil and methanol [J]. CIESC Journal, 2022, 73(5): 1920-1929. |
[6] | Yi SUN, Teng ZHANG, Bo LYU, Chun LI. Improvement for fine regulation of microbial cell factory by intracellular biosensors [J]. CIESC Journal, 2022, 73(2): 521-534. |
[7] | Jingnan WANG, Jian PANG, Lei QIN, Chao GUO, Bo LYU, Chun LI, Chao WANG. Breeding and modification strategies of butenyl-spinosyn high-yield strains [J]. CIESC Journal, 2022, 73(2): 566-576. |
[8] | Xiaosong HOU, Chenxing LIU, Ailing REN, Bin GUO, Yuanming GUO. Study on purification of toluene waste gas by ultrasonic atomization/surfactants-enhanced absorption coupled with biological scrubbing [J]. CIESC Journal, 2022, 73(10): 4692-4706. |
[9] | Xinhui WANG, Ying WANG, Mingdong YAO, Wenhai XIAO. Research progress of vitamin A biosynthesis [J]. CIESC Journal, 2022, 73(10): 4311-4323. |
[10] | Wei SONG, Jinhui WANG, Guipeng HU, Xiulai CHEN, Liming LIU, Jing WU. Cascade catalysis for the synthesis of (R)-β-tyrosine [J]. CIESC Journal, 2022, 73(1): 352-361. |
[11] | ZHOU Dongyi, XIAO Xianghua, XIAO Biao, LIU Yicai. Method of determining optimum mass ratio of fatty acids in composite phase change materials for thermal energy storage [J]. CIESC Journal, 2021, 72(S1): 560-566. |
[12] | Wulin ZHOU, Huifang GAO, Yuling WU, Xian ZHANG, Meijuan XU, Taowei YANG, Minglong SHAO, Zhiming RAO. Engineering of Saccharomyces cerevisiae for biosynthesis of campesterol [J]. CIESC Journal, 2021, 72(8): 4314-4324. |
[13] | MAO Jinzhu, XIAO Shuling, YANG Zhichun, WANG Xiaoyu, ZHANG Shi, CHEN Junhong, XIE Jisheng, CHEN Fude, HUANG Zinuo, FENG Tianyu, ZHANG Aihui, FANG Baishan. Application of synthetic biology in pesticides residues detection [J]. CIESC Journal, 2021, 72(5): 2413-2425. |
[14] | WANG Xin, ZHAO Peng, LI Qingyang, TIAN Pingfang. Research advances in semiconductor synthetic biology [J]. CIESC Journal, 2021, 72(5): 2426-2435. |
[15] | Yukun ZHENG, Qing SUN, Zhen CHEN, Huimin YU. Progress for chemicals production via microbial cell factory: selecting several small molecules and macromolecular products as examples [J]. CIESC Journal, 2021, 72(12): 6109-6121. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||