1 |
Yang Y, Lee S W, Ghasemi H, et al. Charging-free electrochemical system for harvesting low-grade thermal energy [J]. Proc. Natl. Acad. Sci. U. S. A., 2014, 111(48): 17011-17016.
|
2 |
Brogioli D, La Mantia F, Yip N Y. Energy efficiency analysis of distillation for thermally regenerative salinity gradient power technologies [J]. Renew. Energy, 2019, 133: 1034-1045.
|
3 |
Fu J, Cano Z P, Park M G, et al. Electrically rechargeable zinc-air batteries: progress, challenges, and perspectives [J]. Adv. Mater., 2017, 29(7): 1604685.
|
4 |
Lu H Y, Price L, Zhang Q. Capturing the invisible resource: analysis of waste heat potential in Chinese industry [J]. Appl. Energ., 2016, 161: 497-511.
|
5 |
Chu S, Najumdar A. Opportunities and challenges for a sustainable energy future [J]. Nature, 2012, 488(7411): 294-303.
|
6 |
Garone S, Toppi T, Guerra M, et al. A water-ammonia heat transformer to upgrade low-temperature waste heat [J]. Appl. Therm. Eng., 2017, 127: 748-757.
|
7 |
Olkis C, Santori G, Brandani S. An adsorption reverse electrodialysis system for the generation of electricity from low-grade heat [J]. Appl. Energ., 2018, 231: 222-234.
|
8 |
Bell L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems [J]. Science, 2008, 321(5895): 1457-1461.
|
9 |
Xu W C, Zhang J Y, Zhao L, et al. Novel experimental research on the compression process in organic Rankine cycle (ORC) [J]. Energy Convers. Manage., 2017, 137: 1-11.
|
10 |
Sanchez D, Munoz de Escalona J M, Monje B, et al. Preliminary analysis of compound systems based on high temperature fuel cell, gas turbine and organic Rankine cycle [J]. J. Power Sources, 2011, 196(9): 4355-4363.
|
11 |
MacLeod B A, Stanton N J, Gould I E, et al. Large n- and p-type thermoelectric power factors from doped semiconducting single-walled carbon nanotube thin films [J]. Energy Environ. Sci., 2017, 10(10): 2168-2179.
|
12 |
Karalis G, Tzounis L, Lambrou E, et al. A carbon fiber thermoelectric generator integrated as a lamina within an 8-ply laminate epoxy composite: efficient thermal energy harvesting by advanced structural materials [J]. Appl. Energ., 2019, 253: 113512.
|
13 |
Hu R C, Cola B A, Haram H, et al. Harvesting waste thermal energy using carbon-nanotube-based thermo-electrochemical cell [J]. Nano Lett., 2010, 10(3): 838-846.
|
14 |
Rahimi M, Straub A P, Zhang F, et al. Emerging electrochemical and membrane-based systems to convert low-grade heat to electricity [J]. Energy Environ. Sci., 2018, 11(2): 276-285.
|
15 |
Luo Y, Andresen J, Clarke H, et al. A decision support system for waste heat recovery and energy efficiency improvement in data centres [J]. Appl. Energ., 2019, 250: 1217-1224.
|
16 |
Rahimi M, Schoener Z, Zhu X P, et al. Removal of copper from water using a thermally regenerative electrodeposition battery [J]. Journal of Hazardous Materials, 2016, 322: 551-556.
|
17 |
Zhang F, Liu J, Yang W L, et al. A thermally regenerative ammonia-based battery for efficient harvesting of low-grade thermal energy as electrical power [J]. Energy & Environmental Science, 2015, 8(1): 343-349.
|
18 |
Rahimi M, D'Angelo A, Gorski C A, et al. Electrical power production from low-grade waste heat using a thermally regenerative ethylenediamine battery [J]. J. Power Sources, 2017, 351: 45-50.
|
19 |
唐志强, 张亮, 朱恂, 等. 不同Cu2+浓度下热再生氨电池产电及Cu2+去除特性[J]. 化工学报, 2019, 70(12): 4804-4810.
|
|
Tang Z Q, Zhang L, Zhu X, et al. Effect of Cu2+ concentration in cathode on power generation and copper removal of thermally regenerative ammonia-based battery [J]. CIESC Journal, 2019, 70(12): 4804-4810.
|
20 |
Zhang F, LaBarge N, Yang W L, et al. Enhancing low-grade thermal energy recovery in a thermally regenerative ammonia battery using elevated temperatures [J]. ChemSusChem, 2015, 8(6): 1043-1048.
|
21 |
Zhu X P, Rahimi M, Gorski C, al et, A thermally-regenerative ammonia-based flow battery for electrical energy recovery from waste heat [J]. ChemSusChem, 2016, 9(8): 873-879.
|
22 |
Rahimi M, Zhu L, Kowalski K, et al. Improved electrical power production of thermally regenerative batteries using a poly (phenylene oxide) based anion exchange membrane [J]. Journal of Power Sources, 2017, 342: 956-963.
|
23 |
Rahimi M, Kim T, Gorski C A, et al. A thermally regenerative ammonia battery with carbon-silver electrodes for converting low-grade waste heat to electricity [J]. J. Power Sources, 2018, 373: 95-102.
|
24 |
Wang W G, Shu G Q, Tian H, et al. A bimetallic thermally-regenerative ammonia-based flow battery for low-grade waste heat recovery [J]. J. Power Sources, 2019, 424: 184-192.
|
25 |
Wang W G, Tian H, Shu G Q, et al. A bimetallic thermally regenerative ammonia-based battery for high power density and efficiently harvesting low-grade thermal energy [J]. J. Mater. Chem. A, 2019, 7(11): 5991-6000.
|
26 |
Zhang L, Li Y X, Zhu X, et al. Copper foam electrodes for increased power generation in thermally regenerative ammonia-based batteries for low-grade waste heat recovery [J]. Industrial & Engineering Chemistry Research, 2019, 58(17): 7408-7415.
|
27 |
Zhang Y S, Zhang L, Li J, et al. Performance of a thermally regenerative ammonia-based flow battery with 3D porous electrodes: effect of reactor and electrode design [J]. Electrochim. Acta, 2020, 331: 135442.
|
28 |
Vicari F, D􀆳Angelo A, Kouko Y,et al. On the regeneration of thermally regenerative ammonia batteries [J]. Journal of Applied Electrochemistry,2018, 48(12): 1381-1388.
|
29 |
李彦翔, 张亮, 朱恂, 等. 传质对热可再生氨电池性能的影响[J]. 工程热物理学报, 2019, 40(3): 668-671.
|
|
Li Y X, Zhang L, Zhu X, et al. Effect of mass transfer on the performance of membrane electrode assembly typed thermally regenerative ammonia-based battery [J]. Journal of Engineering Thermophysics, 2019, 40(3): 668-671.
|
30 |
EL-Bourawi M S, Khayet M, Ma R, et al. Application of vacuum membrane distillation for ammonia removal [J]. Journal of Membrane Science, 2007, 301(1/2): 200-209.
|
31 |
Chang Y H, Ferng Y M. Experimental investigation on bubble dynamics and boiling heat transfer for saturated pool boiling and comparison data with previous works [J]. Applied Thermal Engineering, 2019, 154: 284.
|