CIESC Journal ›› 2021, Vol. 72 ›› Issue (3): 1557-1566.DOI: 10.11949/0438-1157.20201746
• Process system engineering • Previous Articles Next Articles
XIE Miaomiao1(),ZHANG Langwen1,2(),XIE Wei1,2
Received:
2020-12-02
Revised:
2020-12-12
Online:
2021-03-05
Published:
2021-03-05
Contact:
ZHANG Langwen
通讯作者:
张浪文
作者简介:
谢苗苗(1999—),女,硕士研究生,基金资助:
CLC Number:
XIE Miaomiao, ZHANG Langwen, XIE Wei. Subsystem decomposition of complex nonlinear systems[J]. CIESC Journal, 2021, 72(3): 1557-1566.
谢苗苗, 张浪文, 谢巍. 复杂非线性系统的子系统分解方法[J]. 化工学报, 2021, 72(3): 1557-1566.
Add to citation manager EndNote|Ris|BibTeX
参数值 | 单位 |
---|---|
T10=300,T20=300 | K |
F10=5,F20=5,Fr=1.9 | m3/h |
CA10=4,CA20=3 | kmol/m3 |
V1=1.0,V2=0.5,V3=1.0 | m3 |
E1=5×104,E2=5.5×104 | kJ/kmol |
k1=3×106,k2=3×106 | h-1 |
ΔH1=-5×104,ΔH2=-5.3×104 | kJ/kmol |
Hvap=5 | kJ/kmol |
CP=0.231 | kJ/(kg·K) |
R=8.314 | kJ/(kmol·K) |
kg/m3 | |
MWA=50,MWB=50,MWC=50 | kg/kmol |
Table 1 Parameter values in Eq.(29) and Eq.(30)
参数值 | 单位 |
---|---|
T10=300,T20=300 | K |
F10=5,F20=5,Fr=1.9 | m3/h |
CA10=4,CA20=3 | kmol/m3 |
V1=1.0,V2=0.5,V3=1.0 | m3 |
E1=5×104,E2=5.5×104 | kJ/kmol |
k1=3×106,k2=3×106 | h-1 |
ΔH1=-5×104,ΔH2=-5.3×104 | kJ/kmol |
Hvap=5 | kJ/kmol |
CP=0.231 | kJ/(kg·K) |
R=8.314 | kJ/(kmol·K) |
kg/m3 | |
MWA=50,MWB=50,MWC=50 | kg/kmol |
分解 | 子系统 | 状态 | 输入 | 输出 |
---|---|---|---|---|
分解1 | 1 | T1,CA1,CA2,CA3 | Q1 | T1 |
2 | T2,CB1,CB2,CB3 | Q2 | T2 | |
3 | T3,CC1,CC2,CC3 | Q3 | T3 | |
分解2 | 1 | T1,CA1,CB1,CC1 | Q1 | T1 |
2 | T2,CA2,CB2,CC2 | Q2 | T2 | |
3 | T3,CA3,CB3,CC3 | Q3 | T3 | |
分解3 | 1 | T1,CA1,CA3 | Q1 | T1 |
2 | T2,CA2 | Q2 | T2 | |
3 | CB1,CC1,CB2,CC2,T3,CB3,CC3 | Q3 | T3 |
Table 2 Three decompositions for system (29)
分解 | 子系统 | 状态 | 输入 | 输出 |
---|---|---|---|---|
分解1 | 1 | T1,CA1,CA2,CA3 | Q1 | T1 |
2 | T2,CB1,CB2,CB3 | Q2 | T2 | |
3 | T3,CC1,CC2,CC3 | Q3 | T3 | |
分解2 | 1 | T1,CA1,CB1,CC1 | Q1 | T1 |
2 | T2,CA2,CB2,CC2 | Q2 | T2 | |
3 | T3,CA3,CB3,CC3 | Q3 | T3 | |
分解3 | 1 | T1,CA1,CA3 | Q1 | T1 |
2 | T2,CA2 | Q2 | T2 | |
3 | CB1,CC1,CB2,CC2,T3,CB3,CC3 | Q3 | T3 |
Fig.3 Temperature and input trajectories of the nominal closed-loop system under Decomposition 1 (blue dash dotted line), Decomposition 2 (red solid line), and Decomposition 3 (black dotted line)
分解 | J | CPU time/s |
---|---|---|
分解1 | 298.6897 | 26.622806 |
分解2 | 297.3096 | 25.406688 |
分解3 | 295.0141 | 25.270445 |
集中式 | 276.6084 | 24.151277 |
Table 3 Performance index (J) and CPU time of iterative distributed MPC with different decomposition models and centralized MPC
分解 | J | CPU time/s |
---|---|---|
分解1 | 298.6897 | 26.622806 |
分解2 | 297.3096 | 25.406688 |
分解3 | 295.0141 | 25.270445 |
集中式 | 276.6084 | 24.151277 |
Fig.4 The temperature and input trajectories of distributed LMPC when iteration times is 1(red solid line), 2 (black dotted line) and 3 (blue dash dotted line)
迭代次数 | J | CPU time/s |
---|---|---|
1次 | 338.5985 | 12.626477 |
2次 | 297.3096 | 25.406688 |
3次 | 295.3047 | 41.282411 |
Table 5 Performance index and CPU time of distributed LMPC with different iteration times
迭代次数 | J | CPU time/s |
---|---|---|
1次 | 338.5985 | 12.626477 |
2次 | 297.3096 | 25.406688 |
3次 | 295.3047 | 41.282411 |
1 | Daoutidis P, Zachar M, Jogwar S S. Sustainability and process control: a survey and perspective[J]. J. Process. Contr., 2016, 44: 184-206. |
2 | 周红标, 张钰, 柏小颖, 等. 基于自适应模糊神经网络的非线性系统模型预测控制[J]. 化工学报, 2020, 71(7): 3201-3212. |
Zhou H B, Zhang Y, Bai X Y, et al. Model predictive control of nonlinear system based on adaptive fuzzy neural network[J]. CIESC Journal, 2020, 71(7): 3201-3212. | |
3 | Qin S J, Badgwell T A. A survey of industrial model predictive control technology[J]. Control. Eng. Pract., 2003, 11(7): 733-764. |
4 | Rawlings J B, Stewart B T. Coordinating multiple optimization-based controllers: new opportunities and challenges[J]. J. Process. Contr., 2008, 18(9): 839-845. |
5 | Christofides P D, Scattolini R, de la Pena D M, et al. Distributed model predictive control: a tutorial review and future research directions[J]. Comput. Chem. Eng., 2013, 51: 21-41. |
6 | Raimondo D M, Magni L, Scattolini R. Decentralized MPC of nonlinear systems: an input-to-state stability approach[J]. Int. J. Robust. Nonlin. Contr., 2007, 17(17): 1651-1667. |
7 | Magni L, Scattolini R. Stabilizing decentralized model predictive control of nonlinear systems[J]. Automatica, 2006, 42(7): 1231-1236. |
8 | Stanković S S, Stipanović D M, Šiljak D D. Decentralized dynamic output feedback for robust stabilization of a class of nonlinear interconnected systems[J]. Automatica, 2007, 43(5): 861-867. |
9 | Hong C, Jacobsen E W. Performance limitations in decentralized control[J]. J. Process. Contr., 2002, 12(4): 485-494. |
10 | Zhang L W, Xie W, Liu J F. Robust control of saturating systems with Markovian packet dropouts under distributed MPC[J]. ISA Trans., 2019, 85: 49-59. |
11 | Liu S, Liu J F. Distributed Lyapunov-based model predictive control with neighbor-to-neighbor communication[J]. AIChE J., 2014, 60(12): 4124-4133. |
12 | Scattolini R. Architectures for distributed and hierarchical model predictive control: a review[J]. J. Process. Contr., 2009, 19(5): 723-731. |
13 | Farina M, Scattolini R. Distributed predictive control: a non-cooperative algorithm with neighbor-to-neighbor communication for linear systems[J]. Automatica, 2012, 48(6): 1088-1096. |
14 | Heidarinejad M, Liu J F, de la Peña D M, et al. Multirate Lyapunov-based distributed model predictive control of nonlinear uncertain systems[J]. J. Process. Contr., 2011, 21(9): 1231-1242. |
15 | Dunbar W B. Distributed receding horizon control of dynamically coupled nonlinear systems[J]. IEEE T. Automat. Contr., 2007, 52(7): 1249-1263. |
16 | Heo S, Marvin W A, Daoutidis P. Automated synthesis of control configurations for process networks based on structural coupling[J]. Chem. Eng. Sci., 2015, 136: 76-87. |
17 | Heo S, Daoutidis P. Control-relevant decomposition of process networks via optimization-based hierarchical clustering[J]. AIChE J., 2016, 62(9): 3177-3188. |
18 | Kang L X, Tang W T, Liu Y Z, et al. Control configuration synthesis using agglomerative hierarchical clustering: a graph-theoretic approach[J]. J. Process. Contr., 2016, 46: 43-54. |
19 | Yin X Y, Liu J F. Input-output pairing accounting for both structure and strength in coupling[J]. AIChE J., 2017, 63(4), 1226-1235. |
20 | Tang W T, Allman A, Pourkargar D B, et al. Optimal decomposition for distributed optimization in nonlinear model predictive control through community detection[J]. Comput. Chem. Eng., 2018, 111: 43-54. |
21 | Tang W T, Pourkargar D B, Daoutidis P. Relative time-averaged gain array (RTAGA) for distributed control-oriented network decomposition[J]. AIChE J., 2018, 64(5): 1682-1690. |
22 | Yin X Y, Decardi-Nelson B, Liu J F. Subsystem decomposition and distributed moving horizon estimation of wastewater treatment plants[J]. Chem. Eng. Res. Des., 2018, 134: 405-419. |
23 | Yin X Y, Arulmaran K, Liu J F, et al. Subsystem decomposition and configuration for distributed state estimation[J]. AIChE J., 2016, 62(6): 1995-2003. |
24 | Yin X Y, Liu J F. Subsystem decomposition of process networks for simultaneous distributed state estimation and control[J]. AIChE J., 2019, 65(3): 904-914. |
25 | Zhang L W, Yin X Y, Liu J F. Complex system decomposition for distributed state estimation based on weighted graph[J]. Chem. Eng. Res. Des., 2019, 151: 10-22. |
26 | 杨晓峰, 谢巍, 张浪文. 加权有向图社区发现的子系统划分[J]. 控制理论与应用, 2020, 37(9): 1923-1930. |
Yang X F, Xie W, Zhang L W. Weighted directed graph based community detection for subsystem decomposition[J]. Control Theory & Applications, 2020, 37(9): 1923-1930. | |
27 | Leicht E A, Newman M E J. Community structure in directed networks[J]. Phys. Rev. Let., 2007, 100(11): 118703. |
28 | Newman M E J. Modularity and community structure in networks[J]. PNAS, 2006, 103(23): 8577-8582. |
29 | Liu J F, Ohran B J, de la Pena D M, et al. Monitoring and handling of actuator faults in two-tier control systems for nonlinear processes[J]. Chem. Eng. Sci., 2010, 65(10): 3179-3190. |
31 | Pourkargar D B, Almansoori A, Daoutidis P. Impact of decomposition on distributed model predictive control: a process network case study[J]. Ind. Eng. Chem. Res., 2017, 56(34): 9606-9616. |
[1] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[2] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[3] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[4] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[5] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[6] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[7] | Xiaodan SU, Ganyu ZHU, Huiquan LI, Guangming ZHENG, Ziheng MENG, Fang LI, Yunrui YANG, Benjun XI, Yu CUI. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum [J]. CIESC Journal, 2023, 74(4): 1805-1817. |
[8] | Zhongqiu ZHANG, Hongguang LI, Yilin SHI. A multi-task learning approach for complex chemical processes based on manual predictive manipulating strategies [J]. CIESC Journal, 2023, 74(3): 1195-1204. |
[9] | Jianghuai ZHANG, Zhong ZHAO. Robust minimum covariance constrained control for C3 hydrogenation process and application [J]. CIESC Journal, 2023, 74(3): 1216-1227. |
[10] | Weiyi SU, Jiahui DING, Chunli LI, Honghai WANG, Yanjun JIANG. Research progress of enzymatic reactive crystallization [J]. CIESC Journal, 2023, 74(2): 617-629. |
[11] | Yalin WANG, Yuqing PAN, Chenliang LIU. Intermittent process monitoring based on GSA-LSTM dynamic structure feature extraction [J]. CIESC Journal, 2022, 73(9): 3994-4002. |
[12] | Le ZHOU, Chengkai SHEN, Chao WU, Beiping HOU, Zhihuan SONG. Deep fusion feature extraction network and its application in chemical process soft sensing [J]. CIESC Journal, 2022, 73(7): 3156-3165. |
[13] | Kun WANG, Hongbo SHI, Shuai TAN, Bing SONG, Yang TAO. Local time difference constrained neighborhood preserving embedding algorithm for fault detection [J]. CIESC Journal, 2022, 73(7): 3109-3119. |
[14] | Taoyan ZHAO, Jiangtao CAO, Ping LI, Lin FENG, Yu SHANG. Application of interval type-2 fuzzy immune PID controller to temperature control system for uncatalysed oxidation of cyclohexane [J]. CIESC Journal, 2022, 73(7): 3166-3173. |
[15] | Xin ZHANG, Li ZHOU, Shihui WANG, Xu JI, Kexin BI. Integrated optimization of refinery hydrogen networks with crude oil properties fluctuations [J]. CIESC Journal, 2022, 73(4): 1631-1646. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||