CIESC Journal ›› 2021, Vol. 72 ›› Issue (2): 633-652.DOI: 10.11949/0438-1157.20201860
• Reviews and monographs • Previous Articles Next Articles
TANG Weiqiang1(),XIE Peng2,XU Xiaofei1,ZHAO Shuangliang1,2()
Received:
2020-12-17
Revised:
2021-01-14
Online:
2021-02-05
Published:
2021-02-05
Contact:
ZHAO Shuangliang
通讯作者:
赵双良
作者简介:
唐伟强(1991—),男,博士,讲师,基金资助:
CLC Number:
TANG Weiqiang, XIE Peng, XU Xiaofei, ZHAO Shuangliang. Development and applications of reaction density functional theory[J]. CIESC Journal, 2021, 72(2): 633-652.
唐伟强, 谢鹏, 徐小飞, 赵双良. 反应密度泛函理论的构建与初步应用[J]. 化工学报, 2021, 72(2): 633-652.
Add to citation manager EndNote|Ris|BibTeX
1 | 何良年. 绿色化学基本原理[M]. 北京: 科学出版社, 2018. |
He L N. Fundamentals of Green Chemistry[M]. Beijing: Science Press, 2018. | |
2 | Liu H, Jiang T, Han B, et al. Selective phenol hydrogenation to cyclohexanone over a dual supported Pd-Lewis acid catalyst[J]. Science, 2009, 326(5957): 1250-1252. |
3 | Kong D Y, Moon P J, Lui E K J, et al. Direct reversible decarboxylation from stable organic acids in dimethylformamide solution[J]. Science, 2020, 369(6503): 557-561. |
4 | Wang W R, Rao H S, Fang W J, et al. Enhancing loading amount and performance of quantum-dot-sensitized solar cells based on direct adsorption of quantum dots from bicomponent solvents[J]. The Journal of Physical Chemistry Letters, 2019, 10(2): 229-237. |
5 | Chew A K, Walker T W, Shen Z Z, et al. Effect of mixed-solvent environments on the selectivity of acid-catalyzed dehydration reactions[J]. ACS Catalysis, 2020, 10(3): 1679-1691. |
6 | Hirata F. Molecular Theory of Solvation[M]. Dordrecht: Kluwer Academic Publishers, 2004. |
7 | Mennucci B, Cammi R. Continuum Solvation Models in Chemical Physics[M]. Chichester, UK:John Wiley & Sons, Ltd, 2007. |
8 | Tomasi J, Mennucci B, Cammi R. Quantum mechanical continuum solvation models[J]. Chemical Reviews, 2005, 105(8): 2999-3094. |
9 | Reichardt C, Welton T. Solvents and Solvent Effects in Organic Chemistry[M]. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. |
10 | Carey F A. Organic Chemistry[M]. The McGraw-Hill Companies, 2004. |
11 | Ahn Y H, Moon S, Koh D Y, et al. One-step formation of hydrogen clusters in clathrate hydrates stabilized via natural gas blending[J]. Energy Storage Materials, 2020, 24: 655-661. |
12 | Hong S J, Moon S, Lee Y, et al. Investigation of thermodynamic and kinetic effects of cyclopentane derivatives on CO2 hydrates for potential application to seawater desalination[J]. Chemical Engineering Journal, 2019, 363: 99-106. |
13 | Kyung D, Lee W. Structure, stability, and storage capacity of CO2+N2O mixed hydrates for the storage of CO2+N2O mixture gas[J]. International Journal of Greenhouse Gas Control, 2018, 76: 32-38. |
14 | Li K Y, Shi R L, Tang L L, et al. Cage fusion from bi-cages to tri-cages during nucleation of methane hydrate: a DFT-D simulation[J]. Physical Chemistry Chemical Physics, 2019, 21(18): 9150-9158. |
15 | Andanson J M, Baiker A. Exploring catalytic solid/liquid interfaces by in situ attenuated total reflection infrared spectroscopy[J]. Chemical Society Reviews, 2010, 39(12): 4571-4584. |
16 | Miertuš S, Tomasi J. Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes[J]. Chemical Physics, 1982, 65(2): 239-245. |
17 | Miertuš S, Scrocco E, Tomasi J. Electrostatic interaction of a solute with a continuum. A direct utilizaion of ab initio molecular potentials for the prevision of solvent effects[J]. Chemical Physics, 1981, 55(1): 117-129. |
18 | Kuechler E R, York D M. Quantum mechanical study of solvent effects in a prototype SN2 reaction in solution: Cl-attack on CH3Cl[J]. J. Chem. Phys., 2014, 140(5): 054109. |
19 | Car R, Parrinello M. Unified approach for molecular dynamics and density-functional theory[J]. Physical Review Letters, 1985, 55(22): 2471-2474. |
20 | Vreven T, Frisch M J, Kudin K N, et al. Geometry optimization with QM/MM methods (II): Explicit quadratic coupling[J]. Molecular Physics, 2006, 104(5/6/7): 701-714. |
21 | Laino T, Mohamed F, Laio A, et al. An efficient real space multigrid QM/MM electrostatic coupling[J]. Journal of Chemical Theory and Computation, 2005, 1(6): 1176-1184. |
22 | Orozco M, Luque F J. Theoretical methods for the description of the solvent effect in biomolecular systems[J]. Chemical Reviews, 2000, 100(11): 4187-4226. |
23 | Muñoz J, Barril X, Luque F J, et al. Partitioning of free energies of solvation into fragment contributions: applications in drug design[M]//Fundamentals of Molecular Similarity. Springer, 2001: 143-168. |
24 | Vreven T, Morokuma K. On the application of the IMOMO (integrated molecular orbital + molecular orbital) method[J]. Journal of Computational Chemistry, 2000, 21(16): 1419-1432. |
25 | Mikkelsen K V, Jørgensen P, Jensen H J A. A multiconfiguration self-consistent reaction field response method[J]. The Journal of Chemical Physics, 1994, 100(9): 6597-6607. |
26 | Bishop D M. Aspects of non-linear-optical calculations[J]. Advances in Quantum Chemistry, 1994, 25: 1-45. |
27 | Shelton D P, Rice J E. Measurements and calculations of the hyperpolarizabilities of atoms and small molecules in the gas phase[J]. Chemical Reviews, 1994, 94(1): 3-29. |
28 | Galván I F, Sánchez M L, Martı́n M E, et al. ASEP/MD: a program for the calculation of solvent effects combining QM/MM methods and the mean field approximation[J]. Computer Physics Communications, 2003, 155(3): 244-259. |
29 | Sánchez M L, Martín M E, Aguilar M A, et al. Solvent effects by means of averaged solvent electrostatic potentials: coupled method[J]. Journal of Computational Chemistry, 2000, 21(9): 705-715. |
30 | Hansen J P, McDonald I R. Theory of Simple Liquids[M]. Amsterdam: Elsevier, 1986. |
31 | Hirata F, Sato H, Ten-no S, et al. The RISM-SCF/MCSCF approach for chemical processes in solutions[M]//Computational Biochemistry and Biophysics. CRC Press, 2001. |
32 | Chandler D, Andersen H C. Optimized cluster expansions for classical fluids (Ⅱ): Theory of molecular liquids[J]. The Journal of Chemical Physics, 1972, 57(5): 1930-1937. |
33 | Hirata F, Pettitt B M, Rossky P J. Application of an extended RISM equation to dipolar and quadrupolar fluids[J]. The Journal of Chemical Physics, 1982, 77(1): 509-520. |
34 | Hirata F, Rossky P J. An extended RISM equation for molecular polar fluids[J]. Chemical Physics Letters, 1981, 83(2): 329-334. |
35 | Hirata F, Rossky P J, Pettitt B M. The interionic potential of mean force in a molecular polar solvent from an extended RISM equation[J]. The Journal of Chemical Physics, 1983, 78(6): 4133-4144. |
36 | Andersen H C, Chandler D, Weeks J D. Optimized cluster expansions for classical fluids (Ⅲ): Applications to ionic solutions and simple liquids[J]. The Journal of Chemical Physics, 1972, 57(7): 2626-2631. |
37 | Hudson S, Andersen H C. Optimized cluster expansions for classical fluids (Ⅳ): Primitive model electrolyte solutions[J]. The Journal of Chemical Physics, 1974, 60(5): 2188. |
38 | Ten-no S, Hirata F, Kato S. A hybrid approach for the solvent effect on the electronic structure of a solute based on the RISM and Hartree-Fock equations[J]. Chemical Physics Letters, 1993, 214(3/4): 391-396. |
39 | Ten-no S, Hirata F, Kato S. Reference interaction site model self-consistent field study for solvation effect on carbonyl compounds in aqueous solution[J]. The Journal of Chemical Physics, 1994, 100(10): 7443-7453. |
40 | Sato H, Hirata F. Theoretical study for autoionization of liquid water: temperature dependence of the ionic product (pKw)[J]. The Journal of Physical Chemistry A, 1998, 102(15): 2603-2608. |
41 | Ishida T, Hirata F, Sato H, et al. Molecular theory of solvent effect on Keto-Enol tautomers of formamide in aprotic solvents: RISM-SCF approach[J]. The Journal of Physical Chemistry B, 1998, 102(11): 2045-2050. |
42 | Wesolowski T A, Weber J. Kohn-Sham equations with constrained electron density: an iterative evaluation of the ground-state electron density of interacting molecules[J]. Chemical Physics Letters, 1996, 248(1/2): 71-76. |
43 | Zhao S L, Liu Y, Chen X Q, et al. Unified framework of multiscale density functional theories and its recent applications[J]. Advances in Chemical Engineering, 2015, 47: 1-83. |
44 | Wu J Z. Density functional theory for liquid structure and thermodynamics[M]//Molecular Thermodynamics of Complex Systems. Berlin Heidelberg: Springer, 2008. |
45 | Liu Y, Zhao S L, Wu J Z. A site density functional theory for water: application to solvation of amino acid side chains[J]. Journal of Chemical Theory and Computation, 2013, 9(4): 1896-1908. |
46 | Lian C, Cai C, Shen X J, et al. Improved oxidation of hydrogen off-gas by hydrophobic surface modification: a multiscale density functional theory study[J]. Particuology, 2019, 44: 28-35. |
47 | Wu J Z. Classical density functional theory for molecular systems[M]//Variational Methods in Molecular Modeling. Singapore: Springer, 2017. |
48 | Wu J Z. Density functional theory for chemical engineering: from capillarity to soft materials[J]. AIChE Journal, 2006, 52(3): 1169-1193. |
49 | Wu J Z, Li Z D. Density-functional theory for complex fluids[J]. Annual Review of Physical Chemistry, 2007, 58: 85-112. |
50 | Zhao S L, Jin Z H, Wu J Z. New theoretical method for rapid prediction of solvation free energy in water[J]. The Journal of Physical Chemistry B, 2011, 115(21): 6971-6975. |
51 | Wu H G, Li Y, Kadirov D, et al. Efficient molecular approach to quantifying solvent-mediated interactions[J]. Langmuir, 2017, 33(42): 11817-11824. |
52 | Liu Y, Liu H L, Hu Y, et al. Development of a density functional theory in three-dimensional nanoconfined space: H2 storage in metal-organic frameworks[J]. The Journal of Physical Chemistry B, 2009, 113(36): 12326-12331. |
53 | Liu Y, Liu H L, Hu Y, et al. Density functional theory for adsorption of gas mixtures in metal-organic frameworks[J]. The Journal of Physical Chemistry B, 2010, 114(8): 2820-2827. |
54 | Lian C, Zhao S, Liu H, et al. Time-dependent density functional theory for the charging kinetics of electric double layer containing room-temperature ionic liquids[J]. The Journal of Chemical Physics, 2016, 145(20): 204707. |
55 | Zhao S L, Wu J Z. Self-consistent equations governing the dynamics of nonequilibrium colloidal systems[J]. The Journal of Chemical Physics, 2011, 134(5): 054514. |
56 | Ma M M, Zhao S L, Liu H L, et al. Microscopic insights into the efficiency of capacitive mixing process[J]. AIChE Journal, 2017, 63(6): 1785-1791. |
57 | Ma M M, Zhao S L, Xu Z L. Investigation of dielectric decrement and correlation effects on electric double-layer capacitance by self-consistent field model[J]. Communications in Computational Physics, 2016, 20(2): 441-458. |
58 | Petrosyan S A, Briere J F, Roundy D, et al. Joint density-functional theory for electronic structure of solvated systems[J]. Physical Review B, 2007, 75(20): 205105. |
59 | Sundararaman R, Arias T A. Efficient classical density-functional theories of rigid-molecular fluids and a simplified free energy functional for liquid water[J]. Computer Physics Communications, 2014, 185(3): 818-825. |
60 | Sundararaman R. Joint density-functional methods for first-principles chemistry in solution[D]. Cornell: Cornell University, 2013. |
61 | Sundararaman R, Letchworth-Weaver K, Schwarz K A, et al. JDFTx: software for joint density-functional theory[J]. SoftwareX, 2017, 6: 278-284. |
62 | Deng S Z, Cai W. Extending the fast multipole method for charges inside a dielectric sphere in an ionic solvent: high-order image approximations for reaction fields[J]. Journal of Computational Physics, 2007, 227(2): 1246-1266. |
63 | Lin Y, Baumketner A, Deng S, et al. An image-based reaction field method for electrostatic interactions in molecular dynamics simulations of aqueous solutions[J]. J. Chem. Phys., 2009, 131(15): 154103. |
64 | Lin Y, Baumketner A, Song W, et al. Ionic solvation studied by image-charge reaction field method[J]. J. Chem. Phys., 2011, 134(4): 044105. |
65 | Qin P, Xu Z, Cai W, et al. Image charge methods for a three-dielectric-layer hybrid solvation model of biomolecules[J]. Communications in Computational Physics, 2009, 6(5): 955-977. |
66 | Tang W Q, Cai C, Zhao S L, et al. Development of reaction density functional theory and its application to glycine tautomerization reaction in aqueous solution[J]. The Journal of Physical Chemistry C, 2018, 122(36): 20745-20754. |
67 | Laidler K J, King M C. Development of transition-state theory[J]. The Journal of Physical Chemistry, 1983, 87(15): 2657-2664. |
68 | Berg M, Harris A L, Harris C B. Rapid solvent-induced recombination and slow energy relaxation in a simple chemical reaction: picosecond studies of iodine photodissociation in CCl4[J]. Physical Review Letters, 1985, 54(9): 951-954. |
69 | Rosenthal S J, Xie X L, Du M, et al. Femtosecond solvation dynamics in acetonitrile: observation of the inertial contribution to the solvent response[J]. The Journal of Chemical Physics, 1991, 95(6): 4715-4718. |
70 |
Cai C, Tang W Q, Qiao C Z, et al. A reaction density functional theory study of solvent effect in the nucleophilic addition reactions in aqueous solution[J]. Green Energy & Environment, 2020, DOI: 10.1016/j.gee.2020.11.028.
DOI |
71 | Zhao S, Ramirez R, Vuilleumier R, et al. Molecular density functional theory of solvation: from polar solvents to water[J]. The Journal of Chemical Physics, 2011, 134(19): 194102. |
72 | Smith M B, March J. March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure[M]. John Wiley & Sons, 2007. |
73 | Wada G, Tamura E, Okina M, et al. On the ratio of zwitterion form to uncharged form of glycine at equilibrium in various aqueous media[J]. Bulletin of the Chemical Society of Japan, 1982, 55(10): 3064-3067. |
74 | Császár A G. On the structures of free glycine and α-alanine[J]. Journal of Molecular Structure, 1995, 346: 141-152. |
75 | Tortonda F R, Pascual-Ahuir J L, Silla E, et al. Why is glycine a zwitterion in aqueous solution? A theoretical study of solvent stabilising factors[J]. Chemical Physics Letters, 1996, 260(1/2): 21-26. |
76 | Tortonda F R, Pascual-Ahuir J L, Silla E, et al. Aminoacid zwitterions in solution: geometric, energetic, and vibrational analysis using density functional theory-continuum model calculations[J]. The Journal of Chemical Physics, 1998, 109(2): 592-603. |
77 | Balta B, Aviyente V. Solvent effects on glycine (Ⅰ): A supermolecule modeling of tautomerization via intramolecular proton transfer[J]. Journal of Computational Chemistry, 2003, 24(14): 1789-1802. |
78 | Tortonda F R, Silla E, Tuñón I, et al. Intramolecular proton transfer of serine in aqueous solution. Mechanism and energetics[J]. Theoretical Chemistry Accounts, 2000, 104(2): 89-95. |
79 | Nagy P I, Noszál B. Theoretical study of the tautomeric/conformational equilibrium of aspartic acid zwitterions in aqueous solution[J]. The Journal of Physical Chemistry A, 2000, 104(29): 6834-6843. |
80 | Slifkin M A, Ali S M. Thermodynamic parameters of the activation of glycine zwitterion protonation reactions[J]. Journal of Molecular Liquids, 1984, 28(4): 215-221. |
81 | Tuñón I, Silla E, Ruiz-López M F. On the tautomerization process of glycine in aqueous solution[J]. Chemical Physics Letters, 2000, 321(5/6): 433-437. |
82 | Tolosa S, Hidalgo A, Sansón J A. Amino acid tautomerization reactions in aqueous solution via concerted and assisted mechanisms using free energy curves from MD simulation[J]. The Journal of Physical Chemistry B, 2012, 116(43): 13033-13044. |
83 | Senn H M, Margl P M, Schmid R, et al. Ab initio molecular dynamics with a continuum solvation model[J]. The Journal of Chemical Physics, 2003, 118(3): 1089-1100. |
84 | Bandyopadhyay P, Gordon M S, Mennucci B, et al. An integrated effective fragment-polarizable continuum approach to solvation: theory and application to glycine[J]. The Journal of Chemical Physics, 2002, 116(12): 5023. |
85 | Leung K, Rempe S B. Ab initio molecular dynamics study of glycine intramolecular proton transfer in water[J]. The Journal of Chemical Physics, 2005, 122(18): 184506. |
86 | Resasco D E, Wang B, Crossley S. Zeolite-catalysed C—C bond forming reactions for biomass conversion to fuels and chemicals[J]. Catalysis Science & Technology, 2016, 6(8): 2543-2559. |
87 | Wang B, Wright D, Cliffel D, et al. Ionization-enhanced decomposition of 2, 4, 6-trinitrotoluene (TNT) molecules[J]. The Journal of Physical Chemistry A, 2011, 115(28): 8142-8146. |
88 | Edsall J T, Blanchard M H. The activity ratio of zwitterions and uncharged molecules in ampholyte solutions. The dissociation constants of amino acid esters[J]. Journal of the American Chemical Society, 1933, 55(6): 2337-2353. |
89 | Sharma R, Kumar N, Yaday R. Chemistry and pharmacological importance of 1, 3, 4-oxadiazole derivatives[J]. Research & Reviews: Journal of Chemistry, 2015, 4(2): 1-27. |
90 | Burcu Arslan N, Özdemir N, Dayan O, et al. Direct and solvent-assisted thione-thiol tautomerism in 5-(thiophen-2-yl)-1, 3, 4-oxadiazole-2(3H)-thione: experimental and molecular modeling study[J]. Chemical Physics, 2014, 439: 1-11. |
91 | Fershtat L L, Epishina M A, Ovchinnikov I V, et al. Side-chain prototropic tautomerism of 4-hydroxyfuroxans in methylation reactions[J]. Tetrahedron Letters, 2016, 57(50): 5685-5689. |
92 | Bondock S, Adel S, Etman H A, et al. Synthesis and antitumor evaluation of some new 1, 3, 4-oxadiazole-based heterocycles[J]. European Journal of Medicinal Chemistry, 2012, 48: 192-199. |
93 | Omar F, Mahfouz N, Design Rahman M., synthesis and antiinflammatory activity of some1, 3, 4-oxadiazole derivatives[J]. European Journal of Medicinal Chemistry, 1996, 31(10): 819-825. |
94 | Ghiran D, Schwartz I, Simiti I. Antimitotic activity of 2-amino-1, 3, 4-oxadiazoles[J]. Farmacia, 1974, 22: 141. |
95 | Yale H L, Losee K. 2-Amino-5-substituted 1, 3, 4-oxadiazoles and 5-imino-2-substituted Δ2-1, 3, 4-oxadiazolines. A group of novel muscle relaxants[J]. Journal of Medicinal Chemistry, 1966, 9(4): 478-483. |
96 | Tang W Q, Yu H P, Cai C, et al. Solvent effects on a derivative of 1, 3, 4-oxadiazole tautomerization reaction in water: a reaction density functional theory study[J]. Chemical Engineering Science, 2020, 213: 115380. |
97 | Xie J, Otto R, Mikosch J, et al. Identification of atomic-level mechanisms for gas-phase X-+CH3Y SN2 reactions by combined experiments and simulations[J]. Accounts of Chemical Research, 2014, 47(10): 2960-2969. |
98 | Abboud J U M, Notario R, Bertrán J, et al. One century of physical organic chemistry: the Menshutkin reaction[M]//Progress in Physical Organic Chemistry. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007: 1-182. |
99 | Xie J, Hase W L. Rethinking the SN2 reaction[J]. Science, 2016, 352(6281): 32-33. |
100 | Ingold C K. Structure and Mechanism in Organic Chemistry[M]. Ithaca: Cornell University Press, 1953. |
101 | Olmstead W N, Brauman J I. Gas-phase nucleophilic displacement reactions[J]. Journal of Mass Spectrometry, 1995, 30(12): 1653-1662. |
102 | Chabinyc M L, Craig S L, Regan C K, et al. Gas-phase ionic reactions: dynamics and mechanism of nucleophilic displacements[J]. Science, 1998, 279(5358): 1882-1886. |
103 | Hwang J K, King G, Creighton S, et al. Simulation of free energy relationships and dynamics of SN2 reactions in aqueous solution[J]. Journal of the American Chemical Society, 1988, 110(16): 5297-5311. |
104 | Mikosch J, Trippel S, Eichhorn C, et al. Imaging nucleophilic substitution dynamics[J]. Science, 2008, 319(5860): 183-186. |
105 | Chandrasekhar J, Smith S F, Jorgensen W L. SN2 reaction profiles in the gas phase and aqueous solution[J]. Journal of the American Chemical Society, 1984, 106(10): 3049-3050. |
106 | Manikandan P, Zhang J X, Hase W L. Chemical dynamics simulations of X- + CH3Y → XCH3 + Y- gas-phase SN2 nucleophilic substitution reactions. Nonstatistical dynamics and nontraditional reaction mechanisms[J]. The Journal of Physical Chemistry A, 2012, 116(12): 3061-3080. |
107 | Doi K, Togano E, Xantheas S S, et al. Microhydration effects on the intermediates of the SN2 reaction of iodide anion with methyl iodide[J]. Angewandte Chemie International Edition, 2013, 52(16): 4380-4383. |
108 | Beronius P, Tyrrell V, Tufte T, et al. Electrochemical methods in kinetic studies of isotopic exchange reactions (I): Application to systems of the type RI + I*- ⇌RI* + I-[J]. Acta Chemica Scandinavica, 1961, 15: 1151-1164. |
109 | Gao J L. A priori computation of a solvent-enhanced SN2 reaction profile in water: the Menshutkin reaction[J]. Journal of the American Chemical Society, 1991, 113(20): 7796-7797. |
110 | Gao J L, Xia X F. A two-dimensional energy surface for a type II SN2 reaction in aqueous solution[J]. Journal of the American Chemical Society, 1993, 115(21): 9667-9675. |
111 | O'Hair R A J, Davico G E, Hacaloglu J, et al. Measurements of solvent and secondary kinetic isotope effects for the gas-phase SN2 reactions of fluoride with methyl halides[J]. Journal of the American Chemical Society, 1994, 116(8): 3609-3610. |
112 | Bohme D K, Rakshit A B, MacKay G I. Bridging the gap between the gas phase and solution: transition in the kinetics of acid-base reactions[J]. Journal of the American Chemical Society, 1982, 104(4): 1100-1101. |
113 | Bohme D K, Raksit A B. Gas-phase measurements of the influence of stepwise solvation on the kinetics of nucleophilic displacement reactions with chloromethane and bromomethane at room temperature[J]. Journal of the American Chemical Society, 1984, 106(12): 3447-3452. |
114 | Bohme D K, Raksit A B. Gas-phase measurements of the influence of stepwise solvation on the kinetics of SN2 reactions of solvated F– with CH3Cl and CH3Br and of solvated Cl– with CH3Br[J]. Canadian Journal of Chemistry, 1985, 63(11): 3007-3011. |
115 | Hierl P M, Ahrens A F, Henchman M, et al. Nucleophilic displacement as a function of hydration number and temperature: rate constants and product distributions for OD-(D2O)0, 1, 2, 3 + CH3Cl at 200—500 K[J]. Journal of the American Chemical Society, 1986, 108(11): 3142-3143. |
116 | Henchman M, Paulson J F, Hierl P M. Nucleophilic displacement with a selectively solvated nucleophile: the system hydrated hydroxide ion (OH-•H2O) + bromomethane at 300 K[J]. Journal of the American Chemical Society, 1983, 105(16): 5509-5510. |
117 | Cai C, Tang W, Qiao C, et al. A reaction density functional theory study of the solvent effect in prototype SN2 reactions in aqueous solution[J]. Physical Chemistry Chemical Physics, 2019, 21(45): 24876-24883. |
118 | Tang W Q, Zhao J H, Jiang P, et al. Solvent effects on the symmetric and asymmetric SN2 reactions in acetonitrile solution: a reaction density functional theory study[J]. The Journal of Physical Chemistry B, 2020, 124(15): 3114-3122. |
119 | Castejon H, Wiberg K B. Solvent effects on methyl transfer reactions (1): The Menshutkin reaction[J]. Journal of the American Chemical Society, 1999, 121(10): 2139-2146. |
120 | Streitwieser A. Solvolytic displacement reactions at saturated carbon atoms[J]. Chemical Reviews, 1956, 56(4): 571-752. |
121 | Charton M. Steric effects (Ⅲ): Bimolecular nucleophilic substitution[J]. Journal of the American Chemical Society, 1975, 97(13): 3694-3697. |
122 | Miners S, Fay M W, Baldoni M, et al. Steric and electronic control of 1, 3-dipolar cycloaddition reactions in carbon nanotube nanoreactors[J]. The Journal of Physical Chemistry C, 2019, 123(10): 6294-6302. |
123 | Fu J, Feng X, Liu Y B, et al. Mechanistic insights into the pore confinement effect on bimolecular and monomolecular cracking mechanisms of n-octane over HY and HZSM-5 zeolites: a DFT study[J]. The Journal of Physical Chemistry C, 2018, 122(23): 12222-12230. |
124 | Trembleau L, Rebek J. Helical conformation of alkanes in a hydrophobic cavitand[J]. Science, 2003, 301(5637): 1219-1220. |
125 | Endo O, Nakamura M, Amemiya K, et al. Compression-induced conformation and orientation changes in an n-alkane monolayer on a Au(111) surface[J]. Langmuir, 2017, 33(16): 3934-3940. |
126 | Scarso A, Trembleau L, Rebek J. Encapsulation induces helical folding of alkanes[J]. Angewandte Chemie International Edition, 2003, 42(44): 5499-5502. |
127 | Jordan J H, Gibb B C. Molecular containers assembled through the hydrophobic effect[J]. Chemical Society Reviews, 2015, 44(2): 547-585. |
128 | Yu X C, Tang W Q, Zhao T, et al. Confinement effect on molecular conformation of alkanes in water-filled cavitands: a combined quantum/classical density functional theory study[J]. Langmuir, 2018, 34(45): 13491-13496. |
129 | Keil F J. Diffusion and reaction in porous networks[J]. Catalysis Today, 1999, 53(2): 245-258. |
130 | 刘洪来, 王建国. 化工过程中的表(界)面科学与工程[M]//化学工程学科前沿与展望. 北京: 科学出版社, 2012. |
Liu H L, Wang J G. Surface (interfacial) science and engineering in the process of chemical engineering[M]//Frontiers and Prospects of Chemical Engineering. Beijing: Science Press, 2012. | |
131 | Mathew K, Sundararaman R, Letchworth-Weaver K, et al. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways[J]. The Journal of Chemical Physics, 2014, 140(8): 084106. |
132 | Zhang X Q, Chen X, Hou L P, et al. Regulating anions in the solvation sheath of lithium ions for stable lithium metal batteries[J]. ACS Energy Letters, 2019, 4(2): 411-416. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Minghui CHANG, Lin WANG, Jiajia YUAN, Yifei CAO. Study on the cycle performance of salt solution-storage-based heat pump [J]. CIESC Journal, 2023, 74(S1): 329-337. |
[3] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[4] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[5] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[6] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[7] | Xiaokun HE, Rui LIU, Yuan XUE, Ran ZUO. Review of gas phase and surface reactions in AlN MOCVD [J]. CIESC Journal, 2023, 74(7): 2800-2813. |
[8] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
[9] | Quanbi ZHANG, Yijin YANG, Xujing GUO. Catalytic degradation of dissolved organic matter in rifampicin pharmaceutical wastewater by Fenton oxidation process [J]. CIESC Journal, 2023, 74(5): 2217-2227. |
[10] | Yangguang LYU, Peipei ZUO, Zhengjin YANG, Tongwen XU. Triazine framework polymer membranes for methanol/n-hexane separation via organic solvent nanofiltration [J]. CIESC Journal, 2023, 74(4): 1598-1606. |
[11] | Jin YU, Binbin YU, Xinsheng JIANG. Study on quantification methodology and analysis of chemical effects of combustion control based on fictitious species [J]. CIESC Journal, 2023, 74(3): 1303-1312. |
[12] | Yuanjing MAO, Zhi YANG, Songping MO, Hao GUO, Ying CHEN, Xianglong LUO, Jianyong CHEN, Yingzong LIANG. Estimation of SAFT-VR Mie equation of state parameters and thermodynamic properties of C6—C10 alcohols [J]. CIESC Journal, 2023, 74(3): 1033-1041. |
[13] | Feng DU, Siqi YIN, Hui LUO, Wenan DENG, Chuan LI, Zhenwei HUANG, Wenjing WANG. Study on size effect of H2 adsorption and dissociation on Mo x S y clusters [J]. CIESC Journal, 2022, 73(9): 3895-3903. |
[14] | Qian LIU, Xianglan ZHANG, Zhiping LI, Yulong LI, Mengxing HAN. Screening of deep eutectic solvents and study on extraction performance for oil-hydroxybenzene separation [J]. CIESC Journal, 2022, 73(9): 3915-3928. |
[15] | Yujun MA, Xiangjun LIU. Theoretical studies of water recovery from flue gas by using ceramic membrane [J]. CIESC Journal, 2022, 73(9): 4103-4112. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||