CIESC Journal ›› 2021, Vol. 72 ›› Issue (9): 4759-4767.DOI: 10.11949/0438-1157.20210026
• Separation engineering • Previous Articles Next Articles
Yuan LI1,2(),Feifei ZHANG1,2,Li WANG1,2,Jiangfeng YANG1,2(),Libo LI1,2,Jinping LI1,2
Received:
2021-01-08
Revised:
2021-03-01
Online:
2021-09-05
Published:
2021-09-05
Contact:
Jiangfeng YANG
李媛1,2(),张飞飞1,2,王丽1,2,杨江峰1,2(),李立博1,2,李晋平1,2
通讯作者:
杨江峰
作者简介:
李媛(1994—),女,硕士研究生,基金资助:
CLC Number:
Yuan LI, Feifei ZHANG, Li WANG, Jiangfeng YANG, Libo LI, Jinping LI. Study on the capture of N2O by MIL-101Cr-F/Cl[J]. CIESC Journal, 2021, 72(9): 4759-4767.
李媛, 张飞飞, 王丽, 杨江峰, 李立博, 李晋平. MIL-101Cr-F/Cl用于N2O的捕集研究[J]. 化工学报, 2021, 72(9): 4759-4767.
Add to citation manager EndNote|Ris|BibTeX
吸附剂 | N2O吸附量/(mmol/g) | 温度/K | 文献 |
---|---|---|---|
Silicalite-1 | 1.75 | 298 | [ |
Zeolite-5A | 4.10 | 298 | [ |
MOF-5 | 0.90 | 298 | [ |
ZIF-7 | 2.50 | 298 | [ |
Ni-MOF | 2.81 | 298 | [ |
MIL-100Cr | 5.78 | 298 | [ |
ED-MIL-100Cr | 2.14 | 298 | [ |
MIL-101Cr-F | 3.26 | 298 | 本文 |
MIL-101Cr-Cl | 6.43 | 298 | 本文 |
Table 1 N2O adsorption capacity on several porous materials at 298 K, 1 bar
吸附剂 | N2O吸附量/(mmol/g) | 温度/K | 文献 |
---|---|---|---|
Silicalite-1 | 1.75 | 298 | [ |
Zeolite-5A | 4.10 | 298 | [ |
MOF-5 | 0.90 | 298 | [ |
ZIF-7 | 2.50 | 298 | [ |
Ni-MOF | 2.81 | 298 | [ |
MIL-100Cr | 5.78 | 298 | [ |
ED-MIL-100Cr | 2.14 | 298 | [ |
MIL-101Cr-F | 3.26 | 298 | 本文 |
MIL-101Cr-Cl | 6.43 | 298 | 本文 |
参数 | 数值 | |
---|---|---|
孔隙率 | 0.53 | |
堆积密度/(kg/m3) | 233 | |
吸附剂半径/m | 1×10-5 | |
床层空隙率 | 0.2 | |
床层高度/m | 0.16 | |
床层半径/m | 4×10-3 | |
传质系数(N2O) | 0.02 | |
传质系数(N2) | 0.03 |
Table 2 Parameter setting of adsorbent and adsorption bed
参数 | 数值 | |
---|---|---|
孔隙率 | 0.53 | |
堆积密度/(kg/m3) | 233 | |
吸附剂半径/m | 1×10-5 | |
床层空隙率 | 0.2 | |
床层高度/m | 0.16 | |
床层半径/m | 4×10-3 | |
传质系数(N2O) | 0.02 | |
传质系数(N2) | 0.03 |
1 | Lashof D A, Ahuja D R. Relative contributions of greenhouse gas emissions to global warming[J]. Nature, 1990, 344(6266): 529-531. |
2 | Wuebbles D J. Nitrous oxide: no laughing matter[J]. Science, 2009, 326(5949): 56-57. |
3 | Ravishankara A R, Daniel J S, Portmann R W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century[J]. Science, 2009, 326(5949): 123-125. |
4 | Xiao D J, Bloch E D, Mason J A, et al. Oxidation of ethane to ethanol by N2 O in a metal-organic framework with coordinatively unsaturated iron(Ⅱ) sites[J]. Nature Chemistry, 2014, 6(7): 590-595. |
5 | Kay S. Synthetic chemistry with nitrous oxide[J]. Chemical Society Reviews, 2015, 44(17): 6375-6386. |
6 | Tian H, Xu R, Canadell J G, et al. A comprehensive quantification of global nitrous oxide sources and sinks[J]. Nature, 2020, 586(7828): 248-256. |
7 | Konsolakis M. Recent advances on nitrous oxide (N2O) decomposition over non-noble-metal oxide catalysts: catalytic performance, mechanistic considerations, and surface chemistry aspects[J]. ACS Catalysis, 2015, 5(11): 6397-6421. |
8 | Hamilton S M, Hopkins W S, Harding D J, et al. Infrared induced reactivity on the surface of isolated size-selected clusters: dissociation of N2O on rhodium clusters[J]. Journal of the American Chemical Society, 2010, 132(5): 1448-1449. |
9 | Jabłońska M, Palkovits R. It is no laughing matter: nitrous oxide formation in diesel engines and advances in its abatement over rhodium-based catalysts[J]. Catalysis Science & Technology, 2016, 6(21): 7671-7687. |
10 | Jurado A, Borges A V, Brouyère S. Dynamics and emissions of N2O in groundwater: a review[J]. Science of the Total Environment, 2017, 584/585: 207-218. |
11 | Wang L, Zhang F F, Wang C, et al. Ethylenediamine-functionalized metal organic frameworks MIL-100(Cr) for efficient CO2/N2O separation[J]. Separation and Purification Technology, 2020, 235: 116219. |
12 | Chen D L, Wang N W, Wang F F, et al. Utilizing the gate-opening mechanism in ZIF-7 for adsorption discrimination between N2O and CO2[J]. The Journal of Physical Chemistry C, 2014, 118(31): 17831-17837. |
13 | 赵铎, 陈聚良, 史红军, 等. 一种己二酸尾气中氮氧化物的脱除装置: 206587600U[P]. 2017-10-27. |
Zhao D, Chen J L, Shi H J, et al. A device and method for removing nitrogen oxides in adipic acid tail gases: 206587600U[P]. 2017-10-27. | |
14 | Tsai M L, Hadt R G, Vanelderen P, et al. [Cu2O]2+ active site formation in Cu-ZSM-5: geometric and electronic structure requirements for N2O activation[J]. Journal of the American Chemical Society, 2014, 136(9): 3522-3529. |
15 | Zhang F M, Chen X, Zhuang J, et al. Direct oxidation of benzene to phenol by N2O over meso-Fe-ZSM-5 catalysts obtained via alkaline post-treatment[J]. Catalysis Science & Technology, 2011, 1(7): 1250-1255. |
16 | Zeng R, Feller M, Diskin-Posner Y, et al. CO oxidation by N2O homogeneously catalyzed by ruthenium hydride pincer complexes indicating a new mechanism[J]. Journal of the American Chemical Society, 2018, 140(23): 7061-7064. |
17 | Tolman W. Binding and activation of N2O at transition-metal centers: recent mechanistic insights[J]. Angewandte Chemie International Edition, 2010, 49(6): 1018-1024. |
18 | Park K S, Ni Z, Côté A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10186-10191. |
19 | Hartmann N J, Wu G, Hayton T W. Synthesis and reactivity of a nickel(Ⅱ) thioperoxide complex: demonstration of sulfide-mediated N2O reduction[J]. Chemical Science, 2018, 9(31): 6580-6588. |
20 | Perez-Ramirez J, Santiago M. Metal-substituted hexaaluminates for high-temperature N2O abatement[J]. Chemical Communications, 2007, 38(6): 619-621. |
21 | 周丽, 丁剑木. 空分装置中有害气体的危害与控制[J]. 冶金动力, 2020, 39(5): 30-33. |
Zhou L, Ding J M. The harms and control of harmful gases in air separation unit[J]. Metallurgical Power, 2020, 39(5): 30-33. | |
22 | Harvey M J, Sperlich P, Clough T J, et al. Global research alliance N2O chamber methodology guidelines: recommendations for air sample collection, storage, and analysis[J]. Journal of Environmental Quality, 2020, 49(5): 1110-1125. |
23 | Groen J C, Pérez-Ramírez J, Zhu W D. Adsorption of nitrous oxide on silicalite-1[J]. Journal of Chemical & Engineering Data, 2002, 47(3): 587-589. |
24 | Saha D, Bao Z B, Jia F, et al. Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and zeolite 5A[J]. Environmental Science & Technology, 2010, 44(5): 1820-1826. |
25 | Li L B, Lin R B, Krishna R, et al. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites[J]. Science, 2018, 362(6413): 443-446. |
26 | Lin R B, Xiang S C, Xing H B, et al. Exploration of porous metal-organic frameworks for gas separation and purification[J]. Coordination Chemistry Reviews, 2019, 378: 87-103. |
27 | Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5): 1477. |
28 | 杨江峰, 欧阳坤, 张倬铭, 等. 脱氧剂Fe-MOF-74的制备及氧气吸附失活规律[J]. 化工学报, 2015, 66(8): 3262-3267. |
Yang J F, Ouyang K, Zhang Z M, et al. Preparation and oxygen adsorption of deoxidation agent Fe-MOF-74 and its deactivation[J]. CIESC Journal, 2015, 66(8): 3262-3267. | |
29 | Jiang J, Furukawa H, Zhang Y B, et al. High methane storage working capacity in metal-organic frameworks with acrylate links[J]. Journal of the American Chemical Society, 2016, 138(32): 10244-10251. |
30 | 张倬铭, 杨江峰, 陈杨, 等. 一维直孔道MOFs对CH4/N2和CO2/CH4的分离[J]. 化工学报, 2015, 66(9): 3549-3555. |
Zhang Z M, Yang J F, Chen Y, et al. Separation of CH4/N2 and CO2/CH4 mixtures in one dimension channel MOFs[J]. CIESC Journal, 2015, 66(9): 3549-3555. | |
31 | Yang J F, Wang Y, Li L B, et al. Protection of open-metal V(Ⅲ) sites and their associated CO2/CH4/N2/O2/H2O adsorption properties in mesoporous V-MOFs[J]. Journal of Colloid and Interface Science, 2015, 456: 197-205. |
32 | Kloutse F A, Gauthier W, Hourri A, et al. Study of competitive adsorption of the N2O-CO2-CH4-N2 quaternary mixture on CuBTC[J]. Separation and Purification Technology, 2020, 235: 116211. |
33 | Saha D, Deng S G. Adsorption equilibrium, kinetics, and enthalpy of N2O on zeolite 4A and 13X[J]. Journal of Chemical & Engineering Data, 2010, 55(9): 3312-3317. |
34 | Zhang X P, Chen W J, Shi W, et al. Highly selective sorption of CO2 and N2O and strong gas-framework interactions in a nickel(ⅱ) organic material[J]. Journal of Materials Chemistry A, 2016, 4(41): 16198-16204. |
35 | Yang J F, Du B J, Liu J Q, et al. MIL-100Cr with open Cr sites for a record N2O capture[J]. Chemical Communications, 2018, 54(100): 14061-14064. |
36 | Hamon L, Serre C, Devic T, et al. Comparative study of hydrogen sulfide adsorption in the MIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr), and MIL-101(Cr) metal-organic frameworks at room temperature[J]. Journal of the American Chemical Society, 2009, 131(25): 8775-8777. |
37 | Férey G, Mellot-Draznieks C, Serre C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science, 2005, 309(5743): 2040-2042. |
38 | Malouche A, Blanita G, Dan L P, et al. Hydrogen absorption in 1 nm Pd clusters confined in MIL-101(Cr)[J]. Journal of Materials Chemistry A, 2017, 5(44): 23043-23052. |
39 | Myers A L, Prausnitz J M. Thermodynamics of mixed-gas adsorption[J]. AIChE Journal, 1965, 11(1): 121-127. |
40 | Kumar K V, Gadipelli S, Wood B, et al. Characterization of the adsorption site energies and heterogeneous surfaces of porous materials[J]. Journal of Materials Chemistry A, 2019, 7(17): 10104-10137. |
41 | Yang J F, Bai H H, Shang H, et al. Experimental and simulation study on efficient CH4/N2 separation by pressure swing adsorption on silicalite-1 pellets[J]. Chemical Engineering Journal, 2020, 388: 124222. |
42 | Xu M, Deng S G. Efficient screening of novel adsorbents for coalbed methane recovery[J]. Journal of Colloid and Interface Science, 2020, 565: 131-141. |
43 | Berdonosova E A, Kovalenko K A, Polyakova E V, et al. Influence of anion composition on gas sorption features of Cr-MIL-101 metal-organic framework[J]. The Journal of Physical Chemistry C, 2015, 119(23): 13098-13104. |
44 | Zhao M, Yuan K, Wang Y, et al. Metal-organic frameworks as selectivity regulators for hydrogenation reactions[J]. Nature, 2016, 539(7627): 76-80. |
45 | Yoon J W, Chang H, Lee S J, et al. Selective nitrogen capture by porous hybrid materials containing accessible transition metal ion sites[J]. Nature Materials, 2017, 16(5): 526-531. |
46 | 尚华, 白洪灏, 刘佳奇, 等. CH4-N2在自支撑颗粒型Silicalite-1上的吸附分离及PSA模拟[J]. 化工学报, 2020, 71(5): 2088-2098. |
Shang H, Bai H H, Liu J Q, et al. PSA simulation and adsorption separation of CH4-N2 by self-supporting pellets Silicalite-1[J]. CIESC Journal, 2020, 71(5): 2088-2098. |
[1] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[2] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[3] | Jianhua ZHANG, Mengmeng CHEN, Yawen SUN, Yongzhen PENG. Efficient nitrogen and phosphorus removal from domestic wastewater via simultaneous partial nitritation and phosphorus removal combined Anammox [J]. CIESC Journal, 2023, 74(5): 2147-2156. |
[4] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[5] | Dingping LIU, Aihua CHEN, Xiangyang ZHANG, Wenhao HE, Hai WANG. Study on semi dry hydrolytic denitrification of aluminum ash [J]. CIESC Journal, 2023, 74(3): 1294-1302. |
[6] | Xiaowan PENG, Xiaonan GUO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Modeling and simulation of CH4/N2 separation process with two absorption-adsorption columns using ZIF-8 slurry [J]. CIESC Journal, 2023, 74(2): 784-795. |
[7] | Jinlin MENG, Yu WANG, Qunfeng ZHANG, Guanghua YE, Xinggui ZHOU. Pore network model of low-temperature nitrogen adsorption-desorption in mesoporous materials [J]. CIESC Journal, 2023, 74(2): 893-903. |
[8] | Kun LIU, Yuan YIN, Wenqiang GENG, Haotian XIA. Study on nitrogen fixation performance and mechanism analysis of dielectric barrier discharge under different operating parameters [J]. CIESC Journal, 2022, 73(9): 4045-4053. |
[9] | Jiangwei ZHU, Pengfei MA, Xiao DU, Yanyan YANG, Xiaogang HAO, Shanxia LUO. Specific electronically controlled separation of phosphate anions based on variable valence NiFe-LDH/rGO [J]. CIESC Journal, 2022, 73(7): 3057-3067. |
[10] | Yiwei ZHANG, Hairong TANG, Yong HE, Yanqun ZHU, Zhihua WANG. Experimental study of nitrogen balance in the process of flue gas denitration by ozone low-temperature oxidation [J]. CIESC Journal, 2022, 73(4): 1732-1742. |
[11] | Haolong BAI, Liangliang FU, Guangwen XU, Dingrong BAI. Characteristics of gaseous nitrogen release in coal fluidized bed combustion under different atmospheres [J]. CIESC Journal, 2022, 73(2): 876-886. |
[12] | Changliang HAN, Jingqing XIN, Guangbin YU, Junxiu LIU, Qi'ao XU, Anka YAO, Peng YIN. Experimental and numerical simulation on three-dimensional heat flow field of supercritical nitrogen in micro-channel [J]. CIESC Journal, 2022, 73(2): 653-662. |
[13] | Pengzhi BEI, Wenying LI. An energy decomposition analysis-based extractant selection [J]. CIESC Journal, 2022, 73(2): 739-746. |
[14] | Xiaoyang YANG, Baofeng WANG, Xutao SONG, Fengling YANG, Fangqin CHENG. Migration of sulfur and nitrogen during co-hydrothermal carbonization process of sewage sludge and high-sulfur coal [J]. CIESC Journal, 2022, 73(11): 5211-5219. |
[15] | Junjun GU, Rui LI, Xingyi WU, Xianqiang TANG, Yanping HU. Study on the control effect of electrokinetic drainage of pore water on nitrogen release flux at the mud-water interface [J]. CIESC Journal, 2022, 73(11): 5118-5127. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||