CIESC Journal ›› 2021, Vol. 72 ›› Issue (7): 3601-3612.DOI: 10.11949/0438-1157.20201874
• Catalysis, kinetics and reactors • Previous Articles Next Articles
CAI Dongren1(),ZHAN Guowu1(),XIAO Jingran1,QIU Ting2()
Received:
2020-12-20
Revised:
2021-03-28
Online:
2021-07-05
Published:
2021-07-05
Contact:
ZHAN Guowu,QIU Ting
通讯作者:
詹国武,邱挺
作者简介:
蔡东仁(1990—),男,博士,讲师,基金资助:
CLC Number:
CAI Dongren, ZHAN Guowu, XIAO Jingran, QIU Ting. Synthesis of sulfonic acid functionalized ionic liquids for catalytic applications in biodiesel production[J]. CIESC Journal, 2021, 72(7): 3601-3612.
蔡东仁, 詹国武, 肖静冉, 邱挺. 磺酸功能化离子液体的合成及催化制备生物柴油应用[J]. 化工学报, 2021, 72(7): 3601-3612.
Add to citation manager EndNote|Ris|BibTeX
离子液体 | δ |
---|---|
[Ps-MTH][HSO4] | 9.81 (d, J = 2.7 Hz, 1H), 7.74 (d, J = 1.6 Hz, 1H), 4.56~4.53 (m, 2H), 2.93 (d, J = 7.2 Hz, 2H), 2.51 (d, J = 1.0 Hz, 3H), 2.31~2.28 (m, 2H) |
[Ps-MTH][Tos] | 9.79 (d, J = 2.7 Hz, 1H), 7.73 (d, J = 0.9 Hz, 1H), 7.59 (d, J = 8.3 Hz, 2H), 7.27 (d, J = 7.9 Hz, 2H), 4.52 (d, J = 7.7 Hz, 2H), 2.92 (d, J = 7.2 Hz, 2H), 2.50 (d, J = 0.9 Hz, 3H), 2.30 (s, 3H), 2.29~2.26 (m, 2H) |
[Ps-MTH][CH3SO3] | 9.81 (d, J = 2.7 Hz, 1H), 7.75 (d, J = 1.0 Hz, 1H), 4.56~4.53 (m, 2H), 2.94 (t, J = 7.2 Hz, 2H), 2.71 (s, 3H), 2.51 (d, J = 1.0 Hz, 3H), 2.31~2.28 (m, 2H) |
[Ps-MTH][CF3SO3] | 9.81 (d, J = 2.7 Hz, 1H), 7.75 (d, J = 1.6 Hz, 1H), 4.56~4.54 (m, 2H), 2.94 (t, J = 7.2 Hz, 2H), 2.52 (d, J = 1.0 Hz, 3H), 2.32~2.29 (m, 2H) |
Table 1 The 1H NMR data of four sulfonic group functionalized ionic liquids
离子液体 | δ |
---|---|
[Ps-MTH][HSO4] | 9.81 (d, J = 2.7 Hz, 1H), 7.74 (d, J = 1.6 Hz, 1H), 4.56~4.53 (m, 2H), 2.93 (d, J = 7.2 Hz, 2H), 2.51 (d, J = 1.0 Hz, 3H), 2.31~2.28 (m, 2H) |
[Ps-MTH][Tos] | 9.79 (d, J = 2.7 Hz, 1H), 7.73 (d, J = 0.9 Hz, 1H), 7.59 (d, J = 8.3 Hz, 2H), 7.27 (d, J = 7.9 Hz, 2H), 4.52 (d, J = 7.7 Hz, 2H), 2.92 (d, J = 7.2 Hz, 2H), 2.50 (d, J = 0.9 Hz, 3H), 2.30 (s, 3H), 2.29~2.26 (m, 2H) |
[Ps-MTH][CH3SO3] | 9.81 (d, J = 2.7 Hz, 1H), 7.75 (d, J = 1.0 Hz, 1H), 4.56~4.53 (m, 2H), 2.94 (t, J = 7.2 Hz, 2H), 2.71 (s, 3H), 2.51 (d, J = 1.0 Hz, 3H), 2.31~2.28 (m, 2H) |
[Ps-MTH][CF3SO3] | 9.81 (d, J = 2.7 Hz, 1H), 7.75 (d, J = 1.6 Hz, 1H), 4.56~4.54 (m, 2H), 2.94 (t, J = 7.2 Hz, 2H), 2.52 (d, J = 1.0 Hz, 3H), 2.32~2.29 (m, 2H) |
离子液体 | δ |
---|---|
[Ps-MTH][HSO4] | 157.13, 146.27, 120.64, 50.73, 46.65, 24.01, 11.98 |
[Ps-MTH][Tos] | 157.09, 146.24, 141.98, 138.95, 128.95, 124.87, 120.64, 50.71, 46.64, 24.01, 19.99, 11.97 |
[Ps-MTH][CH3SO3] | 157.13, 146.28, 120.64, 50.73, 46.65, 37.96, 24.01, 11.98 |
[Ps-MTH][CF3SO3] | 157.12, 146.28, 120.64, 118.11, 50.73, 46.65, 24.01, 11.98 |
Table 2 The 13C NMR data of four sulfonic group functionalized ionic liquids
离子液体 | δ |
---|---|
[Ps-MTH][HSO4] | 157.13, 146.27, 120.64, 50.73, 46.65, 24.01, 11.98 |
[Ps-MTH][Tos] | 157.09, 146.24, 141.98, 138.95, 128.95, 124.87, 120.64, 50.71, 46.64, 24.01, 19.99, 11.97 |
[Ps-MTH][CH3SO3] | 157.13, 146.28, 120.64, 50.73, 46.65, 37.96, 24.01, 11.98 |
[Ps-MTH][CF3SO3] | 157.12, 146.28, 120.64, 118.11, 50.73, 46.65, 24.01, 11.98 |
序号 | 离子液体 | 收率 / % |
---|---|---|
1 | [Ps-MIH][CF3SO3] | 83.85±0.39 |
2 | [Ps-MPH][CF3SO3] | 84.92±0.75 |
3 | [Ps-MTH][CF3SO3] | 87.28±0.83 |
4 | [Ps-MTH][HSO4] | 84.28±0.58 |
5 | [Ps-MTH][Tos] | 84.50±0.46 |
6 | [Ps-MTH][CH3SO3] | 81.62±0.29 |
Table 3 The catalytic activity of four sulfonic acid functionalized ionic liquids
序号 | 离子液体 | 收率 / % |
---|---|---|
1 | [Ps-MIH][CF3SO3] | 83.85±0.39 |
2 | [Ps-MPH][CF3SO3] | 84.92±0.75 |
3 | [Ps-MTH][CF3SO3] | 87.28±0.83 |
4 | [Ps-MTH][HSO4] | 84.28±0.58 |
5 | [Ps-MTH][Tos] | 84.50±0.46 |
6 | [Ps-MTH][CH3SO3] | 81.62±0.29 |
编码水平 | X1 反应温度/℃ | X2 醇油摩尔比 | X3 催化剂用量/(mmol/g) |
---|---|---|---|
-1 | 110 | 15 | 0.34 |
0 | 120 | 23 | 0.54 |
1 | 130 | 31 | 0.74 |
Table 4 The factors and levels of response surface analysis
编码水平 | X1 反应温度/℃ | X2 醇油摩尔比 | X3 催化剂用量/(mmol/g) |
---|---|---|---|
-1 | 110 | 15 | 0.34 |
0 | 120 | 23 | 0.54 |
1 | 130 | 31 | 0.74 |
序号 | 工艺条件 | 收率 / % | |||
---|---|---|---|---|---|
X1 | X2 | X3 | 实验值 | 预测值 | |
1 | 0 | 0 | 0 | 87.80±0.36 | 87.23 |
2 | 0 | 0 | 0 | 87.67±0.47 | 87.23 |
3 | 1 | -1 | 0 | 77.03±0.33 | 77.12 |
4 | 1 | 1 | 0 | 89.45±0.58 | 88.95 |
5 | -1 | 0 | -1 | 69.02±0.61 | 68.45 |
6 | -1 | 1 | 0 | 79.16±0.55 | 79.07 |
7 | 0 | 0 | 0 | 87.02±0.52 | 87.23 |
8 | 1 | 0 | -1 | 79.02±0.19 | 78.86 |
9 | -1 | -1 | 0 | 64.32±0.83 | 64.82 |
10 | 1 | 0 | 1 | 84.60±0.36 | 85.17 |
11 | 0 | 0 | 0 | 87.05±0.49 | 87.23 |
12 | -1 | 0 | 1 | 73.24±0.35 | 73.40 |
13 | 0 | -1 | 1 | 65.26±0.68 | 64.60 |
14 | 0 | 1 | -1 | 71.35±0.25 | 72.01 |
15 | 0 | 0 | 0 | 86.63±0.73 | 87.23 |
16 | 0 | 1 | 1 | 87.82±0.28 | 87.76 |
17 | 0 | -1 | -1 | 69.04±0.44 | 69.10 |
Table 5 The experimental values and predicted values of response surface analysis
序号 | 工艺条件 | 收率 / % | |||
---|---|---|---|---|---|
X1 | X2 | X3 | 实验值 | 预测值 | |
1 | 0 | 0 | 0 | 87.80±0.36 | 87.23 |
2 | 0 | 0 | 0 | 87.67±0.47 | 87.23 |
3 | 1 | -1 | 0 | 77.03±0.33 | 77.12 |
4 | 1 | 1 | 0 | 89.45±0.58 | 88.95 |
5 | -1 | 0 | -1 | 69.02±0.61 | 68.45 |
6 | -1 | 1 | 0 | 79.16±0.55 | 79.07 |
7 | 0 | 0 | 0 | 87.02±0.52 | 87.23 |
8 | 1 | 0 | -1 | 79.02±0.19 | 78.86 |
9 | -1 | -1 | 0 | 64.32±0.83 | 64.82 |
10 | 1 | 0 | 1 | 84.60±0.36 | 85.17 |
11 | 0 | 0 | 0 | 87.05±0.49 | 87.23 |
12 | -1 | 0 | 1 | 73.24±0.35 | 73.40 |
13 | 0 | -1 | 1 | 65.26±0.68 | 64.60 |
14 | 0 | 1 | -1 | 71.35±0.25 | 72.01 |
15 | 0 | 0 | 0 | 86.63±0.73 | 87.23 |
16 | 0 | 1 | 1 | 87.82±0.28 | 87.76 |
17 | 0 | -1 | -1 | 69.04±0.44 | 69.10 |
来源 | 方差和 | 自由度 | 均方 | F值 | P值 Prob > F |
---|---|---|---|---|---|
模型 | 1253.59 | 9 | 139.29 | 319.77 | < 0.0001 |
X1 | 245.98 | 1 | 245.98 | 564.69 | < 0.0001 |
X2 | 339.69 | 1 | 339.69 | 779.84 | < 0.0001 |
X3 | 63.23 | 1 | 63.23 | 145.15 | < 0.0001 |
X1X2 | 1.46 | 1 | 1.46 | 3.36 | 0.1094 |
X1X3 | 0.46 | 1 | 0.46 | 1.06 | 0.3371 |
X2X3 | 102.52 | 1 | 102.52 | 235.35 | < 0.0001 |
X12 | 46.43 | 1 | 46.43 | 106.59 | < 0.0001 |
X22 | 173.72 | 1 | 173.72 | 398.81 | < 0.0001 |
X32 | 233.27 | 1 | 233.27 | 535.53 | < 0.0001 |
残差 | 3.05 | 7 | 0.44 | ||
失拟项 | 2.09 | 3 | 0.70 | 2.92 | 0.1634 |
纯误差 | 0.95 | 4 | 0.24 | ||
离散系数 | R2 | 校正R2 | 预测R2 | 方差 | 精密度 |
0.66 | 0.9976 | 0.9945 | 0.9721 | 79.15 | 48.097 |
Table 6 The ANOVA and statistical criteria of BBD model
来源 | 方差和 | 自由度 | 均方 | F值 | P值 Prob > F |
---|---|---|---|---|---|
模型 | 1253.59 | 9 | 139.29 | 319.77 | < 0.0001 |
X1 | 245.98 | 1 | 245.98 | 564.69 | < 0.0001 |
X2 | 339.69 | 1 | 339.69 | 779.84 | < 0.0001 |
X3 | 63.23 | 1 | 63.23 | 145.15 | < 0.0001 |
X1X2 | 1.46 | 1 | 1.46 | 3.36 | 0.1094 |
X1X3 | 0.46 | 1 | 0.46 | 1.06 | 0.3371 |
X2X3 | 102.52 | 1 | 102.52 | 235.35 | < 0.0001 |
X12 | 46.43 | 1 | 46.43 | 106.59 | < 0.0001 |
X22 | 173.72 | 1 | 173.72 | 398.81 | < 0.0001 |
X32 | 233.27 | 1 | 233.27 | 535.53 | < 0.0001 |
残差 | 3.05 | 7 | 0.44 | ||
失拟项 | 2.09 | 3 | 0.70 | 2.92 | 0.1634 |
纯误差 | 0.95 | 4 | 0.24 | ||
离散系数 | R2 | 校正R2 | 预测R2 | 方差 | 精密度 |
0.66 | 0.9976 | 0.9945 | 0.9721 | 79.15 | 48.097 |
性质 | 数值 | ASTM D6751标准 |
---|---|---|
密度(20℃)/(kg/m3) | 869.43 | — |
运动黏度(40℃)/(mm2/s) | 6.34 | 1.9~6.0 |
酸值/(mg/g) | 0.37 | ≤0.50 |
含水量/(mg/kg) | 94 | ≤500 |
闪点/℃ | 170.5 | ≥130 |
铜片腐蚀度 | 1a | ≤3 |
十六烷值 | 60.9 | ≥47 |
Table 7 The physicochemical properties of soapberry biodiesel
性质 | 数值 | ASTM D6751标准 |
---|---|---|
密度(20℃)/(kg/m3) | 869.43 | — |
运动黏度(40℃)/(mm2/s) | 6.34 | 1.9~6.0 |
酸值/(mg/g) | 0.37 | ≤0.50 |
含水量/(mg/kg) | 94 | ≤500 |
闪点/℃ | 170.5 | ≥130 |
铜片腐蚀度 | 1a | ≤3 |
十六烷值 | 60.9 | ≥47 |
序号 | 原料 | 低碳醇 | 催化剂 | 收率 / % |
---|---|---|---|---|
1 | 无患子油 | 甲醇 | — | 0 |
2 | 无患子油 | 甲醇 | H2SO4 | 91.26±0.34 |
3 | 无患子油 | 甲醇 | [Ps-MTH][CF3SO3] | 92.78±0.47 |
4 | 无患子油 | 乙醇 | [Ps-MTH][CF3SO3] | 83.17±0.28 |
5 | 无患子油 | 丙醇 | [Ps-MTH][CF3SO3] | 74.19±0.32 |
6 | 煎炸废油 | 甲醇 | [Ps-MTH][CF3SO3] | 76.77±0.61 |
7 | 棕榈油 | 甲醇 | [Ps-MTH][CF3SO3] | 84.59±0.54 |
8 | 椰子油 | 甲醇 | [Ps-MTH][CF3SO3] | 92.90±0.44 |
Table 8 The catalytic activity of [Ps-MTH][CF3SO3] in different transesterifications
序号 | 原料 | 低碳醇 | 催化剂 | 收率 / % |
---|---|---|---|---|
1 | 无患子油 | 甲醇 | — | 0 |
2 | 无患子油 | 甲醇 | H2SO4 | 91.26±0.34 |
3 | 无患子油 | 甲醇 | [Ps-MTH][CF3SO3] | 92.78±0.47 |
4 | 无患子油 | 乙醇 | [Ps-MTH][CF3SO3] | 83.17±0.28 |
5 | 无患子油 | 丙醇 | [Ps-MTH][CF3SO3] | 74.19±0.32 |
6 | 煎炸废油 | 甲醇 | [Ps-MTH][CF3SO3] | 76.77±0.61 |
7 | 棕榈油 | 甲醇 | [Ps-MTH][CF3SO3] | 84.59±0.54 |
8 | 椰子油 | 甲醇 | [Ps-MTH][CF3SO3] | 92.90±0.44 |
1 | Qiu T, Guo X T, Yang J B, et al. The synthesis of biodiesel from coconut oil using novel Brønsted acidic ionic liquid as green catalyst[J]. Chemical Engineering Journal, 2016, 296: 71-78. |
2 | Feng Y Y, Li L, Wang X, et al. Stable poly (ionic liquid) with unique crosslinked microsphere structure as efficient catalyst for transesterification of soapberry oil to biodiesel[J]. Energy Conversion and Management, 2017, 153: 649-658. |
3 | Li L, Yi N, Wang X D, et al. Novel triazolium-based ionic liquids as effective catalysts for transesterification of palm oil to biodiesel[J]. Journal of Molecular Liquids, 2018, 249: 732-738. |
4 | Ali C H, Qureshi A S, Mbadinga S M, et al. Biodiesel production from waste cooking oil using onsite produced purified lipase from Pseudomonas aeruginosa FW_SH-1: central composite design approach[J]. Renewable Energy, 2017, 109: 93-100. |
5 | Pan H, Liu X F, Zhang H, et al. Multi-SO3H functionalized mesoporous polymeric acid catalyst for biodiesel production and fructose-to-biodiesel additive conversion[J]. Renewable Energy, 2017, 107: 245-252. |
6 | Chang F, Zhou Q, Pan H, et al. Efficient production of biodiesel from Xanthium sibiricum Patr oil via supramolecular catalysis[J]. Renewable Energy, 2017, 111: 556-560. |
7 | Laesecke J, Ellis N, Production Kirchen P., analysis and combustion characterization of biomass fast pyrolysis oil - biodiesel blends for use in diesel engines[J]. Fuel, 2017, 199: 346-357. |
8 | Kafuku G, Mbarawa M. Biodiesel production from Croton megalocarpus oil and its process optimization[J]. Fuel, 2010, 89(9): 2556-2560. |
9 | Koh M Y, Mohd Ghazi T I. A review of biodiesel production from Jatropha curcas L. oil[J]. Renewable and Sustainable Energy Reviews, 2011, 15(5): 2240-2251. |
10 | Zhang H, Li H, Pan H, et al. Efficient production of biodiesel with promising fuel properties from Koelreuteria integrifoliola oil using a magnetically recyclable acidic ionic liquid[J]. Energy Conversion and Management, 2017, 138: 45-53. |
11 | Berchmans H J, Morishita K, Takarada T. Kinetic study of hydroxide-catalyzed methanolysis of Jatropha curcas-waste food oil mixture for biodiesel production[J]. Fuel, 2013, 104: 46-52. |
12 | Elsheikh Y A. Preparation of Citrullus colocynthis biodiesel via dual-step catalyzed process using functionalized imidazolium and pyrazolium ionic liquids for esterification step[J]. Industrial Crops and Products, 2013, 49: 822-829. |
13 | Olkiewicz M, Plechkova N V, Earle M J, et al. Biodiesel production from sewage sludge lipids catalysed by Brønsted acidic ionic liquids[J]. Applied Catalysis B: Environmental, 2016, 181: 738-746. |
14 | 赵晓霞, 董振浩, 刘光斌, 等. 不同种源无患子品质差异及种籽油脂肪酸分析[J]. 江西农业大学学报, 2014, 36(3): 575-581. |
Zhao X X, Dong Z H, Liu G B, et al. Difference analysis of seed qualities and composition of fatty acid of oil of sapindus mulorossi gaertn from different provenances[J]. Acta Agriculturae Universitatis Jiangxiensis, 2014, 36(3): 575-581. | |
15 | 孙尚德, 崔龙龙, 宋范范, 等. 无患子油理化指标和甘三酯结构分析[J]. 中国油脂, 2011, 36(6): 64-67. |
Sun S D, Cui L L, Song F F, et al. Analysis of the physicochemical characteristics and triacylglycerol composition of Sapindus mukorossi Gaetrh. seed oil[J]. China Oils and Fats, 2011, 36(6): 64-67. | |
16 | 刘光斌, 赵晓霞, 胡冬南, 等. 无患子油脂的提取、理化性质及其制备生物柴油的研究[J]. 中国粮油学报, 2013, 28(3): 59-64. |
Liu G B, Zhao X X, Hu D N, et al. Study on extraction and physiochemical properties of sapindus mukorossi seed oil and preparation of biodiesel[J]. Journal of the Chinese Cereals and Oils Association, 2013, 28(3): 59-64. | |
17 | Ni W, Hua Y, Liu H Y, et al. Tirucallane-type triterpenoid saponins from the roots of Sapindus mukorossi[J]. Chemical & Pharmaceutical Bulletin, 2006, 54(10): 1443-1446. |
18 | Huang H C, Wu M D, Tsai W J, et al. Triterpenoid saponins from the fruits and galls of Sapindus mukorossi[J]. Phytochemistry, 2008, 69(7): 1609-1616. |
19 | Huang H C, Tsai W J, Liaw C C, et al. Anti-platelet aggregation triterpene saponins from the galls of Sapindus mukorossi[J]. Chemical & Pharmaceutical Bulletin, 2007, 55(9): 1412-1415. |
20 | Kuo Y H, Huang H C, Yang Kuo L M, et al. New dammarane-type saponins from the galls of sapindus mukorossi[J]. Journal of Agricultural and Food Chemistry, 2005, 53(12): 4722-4727. |
21 | Ullah Z, Bustam M A, Man Z. Biodiesel production from waste cooking oil by acidic ionic liquid as a catalyst[J]. Renewable Energy, 2015, 77: 521-526. |
22 | Yahya S, Muhamad Wahab S K, Harun F W. Optimization of biodiesel production from waste cooking oil using Fe-Montmorillonite K10 by response surface methodology[J]. Renewable Energy, 2020, 157: 164-172. |
23 | Jamil U, Husain Khoja A, Liaquat R, et al. Copper and calcium-based metal organic framework (MOF) catalyst for biodiesel production from waste cooking oil: a process optimization study[J]. Energy Conversion and Management, 2020, 215: 112934. |
24 | Sulaiman N F, Hashim A N N, Toemen S, et al. Biodiesel production from refined used cooking oil using co-metal oxide catalyzed transesterification[J]. Renewable Energy, 2020, 153: 1-11. |
25 | Xie W L, Wang H. Synthesis of heterogenized polyoxometalate-based ionic liquids with Brönsted-Lewis acid sites: a magnetically recyclable catalyst for biodiesel production from low-quality oils[J]. Journal of Industrial and Engineering Chemistry, 2020, 87: 162-172. |
26 | Guo F, Fang Z, Tian X F, et al. One-step production of biodiesel from Jatropha oil with high-acid value in ionic liquids[J]. Bioresource Technology, 2011, 102(11): 6469-6472. |
27 | Clark K D, Emaus M N, Varona M, et al. Ionic liquids: solvents and sorbents in sample preparation[J]. Journal of Separation Science, 2018, 41(1): 209-235. |
28 | Zhang Q Q, Cui X B, Feng T Y, et al. Hydrolysis of methyl acetate using ionic liquids as catalyst and solvent[J]. Molecular Catalysis, 2020, 484: 110785. |
29 | Ding H, Ye W, Wang Y Q, et al. Process intensification of transesterification for biodiesel production from palm oil: microwave irradiation on transesterification reaction catalyzed by acidic imidazolium ionic liquids[J]. Energy, 2018, 144: 957-967. |
30 | He Y F, Han X X, Chen Q, et al. Transesterification of soybean oil to biodiesel by Brønsted-type ionic liquid acid catalysts[J]. Chemical Engineering & Technology, 2013, 36(9): 1559-1567. |
31 | Fan P, Xing S Y, Wang J Y, et al. Sulfonated imidazolium ionic liquid-catalyzed transesterification for biodiesel synthesis[J]. Fuel, 2017, 188: 483-488. |
32 | Cai D R, Xie Y W, Li L, et al. Design and synthesis of novel Brønsted-Lewis acidic ionic liquid and its application in biodiesel production from soapberry oil[J]. Energy Conversion and Management, 2018, 166: 318-327. |
33 | Xue Z M, Qin L, Jiang J Y, et al. Thermal, electrochemical and radiolytic stabilities of ionic liquids[J]. Physical Chemistry Chemical Physics, 2018, 20(13): 8382-8402. |
34 | Wang B, Qin L, Mu T, et al. Are ionic liquids chemically stable?[J]. Chemical Reviews, 2017, 117(10): 7113-7131. |
[1] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[2] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[3] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[4] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[5] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[6] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[7] | Lizhi WANG, Qiancheng HANG, Yeling ZHENG, Yan DING, Jiaji CHEN, Qing YE, Jinlong LI. Separation of methyl propionate + methanol azeotrope using ionic liquid entrainers [J]. CIESC Journal, 2023, 74(9): 3731-3741. |
[8] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[9] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[10] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[11] | Jiahui CHEN, Xinze YANG, Guzhong CHEN, Zhen SONG, Zhiwen QI. A critical discussion on developing molecular property prediction models: density of ionic liquids as example [J]. CIESC Journal, 2023, 74(2): 630-641. |
[12] | Xue FU, Tingting CHEN, Tingting CHEN, Yingjie XU. Research progress on the conductivity properties of ionic liquids [J]. CIESC Journal, 2022, 73(5): 1883-1893. |
[13] | Wenxuan BAI, Jinxiang CHEN, Fen LIU, Jingcong ZHANG, Zhiping GU, Chengming XIONG, Wangjun SHI, Jiang YU. Metal-based ionic liquid wet oxidative desulfurization process: development and prospect [J]. CIESC Journal, 2022, 73(5): 1847-1862. |
[14] | Jiaren ZHANG, Haichao LIU. Phase equilibrium of transesterification reaction system between soybean oil and methanol [J]. CIESC Journal, 2022, 73(5): 1920-1929. |
[15] | Yanlong JIANG, Ni ZHANG, Danran LI, Bingbing ZHU, Yichen JIANG, Haijun CHEN, Yuezhao ZHU. Selected ionic liquids by COSMO-RS method for tar removal [J]. CIESC Journal, 2022, 73(4): 1704-1713. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||