CIESC Journal ›› 2021, Vol. 72 ›› Issue (7): 3562-3575.DOI: 10.11949/0438-1157.20210048
• Reviews and monographs • Previous Articles Next Articles
FANG Huihuang(),WU Lijie,CHEN Weikun,YUAN Youzhu()
Received:
2021-01-11
Revised:
2021-03-15
Online:
2021-07-05
Published:
2021-07-05
Contact:
YUAN Youzhu
通讯作者:
袁友珠
作者简介:
方辉煌(1991—),男,博士研究生,基金资助:
CLC Number:
FANG Huihuang, WU Lijie, CHEN Weikun, YUAN Youzhu. Recent progress on hydrodeoxygenation of biomass-derived oxygenates over transition metal carbides[J]. CIESC Journal, 2021, 72(7): 3562-3575.
方辉煌, 吴历洁, 陈伟坤, 袁友珠. 生物质基含氧化合物在过渡金属碳化物上加氢脱氧研究进展[J]. 化工学报, 2021, 72(7): 3562-3575.
Add to citation manager EndNote|Ris|BibTeX
组分 | 主要化合物 | 含量/%(质量) |
---|---|---|
不饱和醛和酮化合物 | 丙烯醛、苯甲醛、丁烯醛等 | 3.37 |
羟基酮醛化合物 | 羟基丙醛、乙醇醛、羟基丁酮等 | 9.27 |
醇和二醇类化合物 | 甲醇、乙醇、丁二醇等 | 3.50 |
饱和酮化合物 | 丙酮、丁酮、丁二酮、环己酮等 | 1.13 |
酸类和酯类化合物 | 甲酸、乙酸、丙烯酸、乙酸甲酯等 | 19.78 |
呋喃类和呋喃酮化合物 | 糠醛、(烷基)呋喃、呋喃酮等 | 8.50 |
氢化呋喃化合物 | (烷基)四氢呋喃等 | 3.18 |
苯酚和烷基酚 | 苯酚、甲酚、二甲酚等 | 10.27 |
愈创木基化合物 | 愈创木酚、二甲氧基苯酚等 | 26.40 |
烷基愈创木酚化合物 | 乙基愈创木酚、苯甲醚等 | 7.77 |
未知产物 | — | 6.83 |
Table 1 Major components in typical pyrolysis bio-oil[29-31]
组分 | 主要化合物 | 含量/%(质量) |
---|---|---|
不饱和醛和酮化合物 | 丙烯醛、苯甲醛、丁烯醛等 | 3.37 |
羟基酮醛化合物 | 羟基丙醛、乙醇醛、羟基丁酮等 | 9.27 |
醇和二醇类化合物 | 甲醇、乙醇、丁二醇等 | 3.50 |
饱和酮化合物 | 丙酮、丁酮、丁二酮、环己酮等 | 1.13 |
酸类和酯类化合物 | 甲酸、乙酸、丙烯酸、乙酸甲酯等 | 19.78 |
呋喃类和呋喃酮化合物 | 糠醛、(烷基)呋喃、呋喃酮等 | 8.50 |
氢化呋喃化合物 | (烷基)四氢呋喃等 | 3.18 |
苯酚和烷基酚 | 苯酚、甲酚、二甲酚等 | 10.27 |
愈创木基化合物 | 愈创木酚、二甲氧基苯酚等 | 26.40 |
烷基愈创木酚化合物 | 乙基愈创木酚、苯甲醚等 | 7.77 |
未知产物 | — | 6.83 |
键型 | 解离能/(kJ·mol-1) |
---|---|
Ar—OR | 422 |
Ar—OH | 468 |
ArO—R | 247 |
R—OR | 339 |
R—OH | 385 |
R | 799 |
Table 2 Typical biomass based C—O bonds and their dissociation energies[36]
键型 | 解离能/(kJ·mol-1) |
---|---|
Ar—OR | 422 |
Ar—OH | 468 |
ArO—R | 247 |
R—OR | 339 |
R—OH | 385 |
R | 799 |
反应物 | 催化剂 | 反应条件 | 产物和收率 | 文献 |
---|---|---|---|---|
愈创木酚 | W2C/CNF | 釜式反应器;350℃;4 h;5.5 MPa H2 | 苯酚,30.4% | [ |
愈创木酚 | Mo2C/CNF | 釜式反应器;350℃;4 h;5.5 MPa H2 | 苯酚,45% | [ |
愈创木酚 | Mo2C/CNF | 釜式反应器;350℃;2 h;3.0 MPa H2 | 酚基化合物,91.8% | [ |
愈创木酚 | Mo2C@C Mo2C core/shell | 釜式反应器;340℃;4 h;2.8 MPa H2 | 酚基化合物,71.3% | [ |
愈创木酚 | MoC1-x/CNF | 釜式反应器;350℃;4 h;4.0 MPa H2 | 苯酚,49% | [ |
愈创木酚 | α-MoC1-x/AC | 釜式反应器;340℃;4 h;0.1 MPa H2 | 苯酚和烷基酚,74% | [ |
愈创木酚 | WxC@CS | 固定床;300℃;3.0 MPa H2;WLHSV = 3.0 h-1 | 苯酚,92.5% | [ |
2-甲氧基苯酚 | Mo2C/AC | 釜式反应器;350℃;3.4 MPa H2;6 h | 苯酚,>90% | [ |
间甲酚 | Mo2C | 固定床;150℃;0.1 MPa;H2/间甲酚=2800 | 甲苯,选择性>90% | [ |
苯酚 | Mo2C/TiO2 | 固定床;350℃;2.5 MPa H2 | 苯,>90% | [ |
苯甲醚 | Mo2C | 固定床;247℃;H2/苯甲醚=713;0.1 MPa | 苯,选择性>90% | [ |
苯酚 | MoCx/HCS | 釜式反应器;350℃;3.0 MPa H2;2 h | 苯,57.8% | [ |
苯甲醚 | Mo2C | 固定床;150℃;约0.01到约0.1 MPa H2 | 苯,94% | [ |
苯甲醚 | MoCx/FAU | 固定床;250℃; | 酚类化合物,>70% | [ |
香豆酮 | W2C nanorod | 固定床;340℃;4.0 MPa H2 | 主要是乙苯 | [ |
香兰素 | Mo2C/AC | 釜式反应器;100℃;3 h;0.6 MPa H2 | 对甲酚,60%~70% | [ |
2-(2-甲氧基苯氧基)-1-苯基乙醇 | W2C/AC | 釜式反应器;280℃;2 h;0.69 MPa H2 | 乙苯,91.9% | [ |
Table 3 Hydrodeoxygenation of aromatic ethers and phenols
反应物 | 催化剂 | 反应条件 | 产物和收率 | 文献 |
---|---|---|---|---|
愈创木酚 | W2C/CNF | 釜式反应器;350℃;4 h;5.5 MPa H2 | 苯酚,30.4% | [ |
愈创木酚 | Mo2C/CNF | 釜式反应器;350℃;4 h;5.5 MPa H2 | 苯酚,45% | [ |
愈创木酚 | Mo2C/CNF | 釜式反应器;350℃;2 h;3.0 MPa H2 | 酚基化合物,91.8% | [ |
愈创木酚 | Mo2C@C Mo2C core/shell | 釜式反应器;340℃;4 h;2.8 MPa H2 | 酚基化合物,71.3% | [ |
愈创木酚 | MoC1-x/CNF | 釜式反应器;350℃;4 h;4.0 MPa H2 | 苯酚,49% | [ |
愈创木酚 | α-MoC1-x/AC | 釜式反应器;340℃;4 h;0.1 MPa H2 | 苯酚和烷基酚,74% | [ |
愈创木酚 | WxC@CS | 固定床;300℃;3.0 MPa H2;WLHSV = 3.0 h-1 | 苯酚,92.5% | [ |
2-甲氧基苯酚 | Mo2C/AC | 釜式反应器;350℃;3.4 MPa H2;6 h | 苯酚,>90% | [ |
间甲酚 | Mo2C | 固定床;150℃;0.1 MPa;H2/间甲酚=2800 | 甲苯,选择性>90% | [ |
苯酚 | Mo2C/TiO2 | 固定床;350℃;2.5 MPa H2 | 苯,>90% | [ |
苯甲醚 | Mo2C | 固定床;247℃;H2/苯甲醚=713;0.1 MPa | 苯,选择性>90% | [ |
苯酚 | MoCx/HCS | 釜式反应器;350℃;3.0 MPa H2;2 h | 苯,57.8% | [ |
苯甲醚 | Mo2C | 固定床;150℃;约0.01到约0.1 MPa H2 | 苯,94% | [ |
苯甲醚 | MoCx/FAU | 固定床;250℃; | 酚类化合物,>70% | [ |
香豆酮 | W2C nanorod | 固定床;340℃;4.0 MPa H2 | 主要是乙苯 | [ |
香兰素 | Mo2C/AC | 釜式反应器;100℃;3 h;0.6 MPa H2 | 对甲酚,60%~70% | [ |
2-(2-甲氧基苯氧基)-1-苯基乙醇 | W2C/AC | 釜式反应器;280℃;2 h;0.69 MPa H2 | 乙苯,91.9% | [ |
反应物 | 催化剂 | 反应条件 | 产物和收率 | 文献 |
---|---|---|---|---|
乙酸 | Mo2C | 程序升温反应,350℃;0.1 MPa;H2/反应物=4 | 乙醛和乙烯 | [ |
乙酸 | NP-MoC1-x/mSBA | 程序升温反应,350℃;0.1 MPa;H2/反应物=4 | 乙烯 | [ |
丙酮 | Mo2C | 流动反应器;96℃;81 kPa | 丙烷 | [ |
丙酮 | O*-Mo2C | 流动反应器;96℃;81 kPa | 丙烯 | [ |
丙酮 | Mo2C | 流动反应器;300℃;0.1 MPa;H2/反应物=10 | C3碳氢化合物(主要是丙烯),40%~50% | [ |
丙醛 | Mo2C | 流动反应器;300℃;0.1 MPa;H2/反应物=10 | C3碳氢化合物(丙烯),30%~40% | [ |
丙醛 | porous Mo2C | 流动反应器;常压;300℃ | 丙烯,>60% | [ |
丙醇 | WC | 流动反应器;380℃;0.1 MPa;H2/反应物=10 | 丙烯,>73% | [ |
糠醛 | Mo2C | 固定床;250℃;0.1 MPa H2;H2/反应物=80 | 甲基呋喃,80%~90% | [ |
糠醛 | NiMoC-SiO2 | 釜式反应器;150℃;40 min;6 MPa H2 | 甲基呋喃,约100% | [ |
糠醛 | β-Mo2C | 流动反应器;常压;150℃ | 2-甲基呋喃,50%~60% | [ |
1-辛醇 | Mo2C/ZrO2 | 固定床;380℃;10.0 MPa H2;WHSV= 4.0 h-1 | 辛烯,>90% | [ |
4-甲基-3-环己烯-1-羰基醛 | W2C/AC | 固定床;350℃;0.1 MPa H2;LHSV= 1 ml·g-1·h-1 | 对二甲苯,95% | [ |
Table 4 Hydrodeoxygenation of simple oxygenates
反应物 | 催化剂 | 反应条件 | 产物和收率 | 文献 |
---|---|---|---|---|
乙酸 | Mo2C | 程序升温反应,350℃;0.1 MPa;H2/反应物=4 | 乙醛和乙烯 | [ |
乙酸 | NP-MoC1-x/mSBA | 程序升温反应,350℃;0.1 MPa;H2/反应物=4 | 乙烯 | [ |
丙酮 | Mo2C | 流动反应器;96℃;81 kPa | 丙烷 | [ |
丙酮 | O*-Mo2C | 流动反应器;96℃;81 kPa | 丙烯 | [ |
丙酮 | Mo2C | 流动反应器;300℃;0.1 MPa;H2/反应物=10 | C3碳氢化合物(主要是丙烯),40%~50% | [ |
丙醛 | Mo2C | 流动反应器;300℃;0.1 MPa;H2/反应物=10 | C3碳氢化合物(丙烯),30%~40% | [ |
丙醛 | porous Mo2C | 流动反应器;常压;300℃ | 丙烯,>60% | [ |
丙醇 | WC | 流动反应器;380℃;0.1 MPa;H2/反应物=10 | 丙烯,>73% | [ |
糠醛 | Mo2C | 固定床;250℃;0.1 MPa H2;H2/反应物=80 | 甲基呋喃,80%~90% | [ |
糠醛 | NiMoC-SiO2 | 釜式反应器;150℃;40 min;6 MPa H2 | 甲基呋喃,约100% | [ |
糠醛 | β-Mo2C | 流动反应器;常压;150℃ | 2-甲基呋喃,50%~60% | [ |
1-辛醇 | Mo2C/ZrO2 | 固定床;380℃;10.0 MPa H2;WHSV= 4.0 h-1 | 辛烯,>90% | [ |
4-甲基-3-环己烯-1-羰基醛 | W2C/AC | 固定床;350℃;0.1 MPa H2;LHSV= 1 ml·g-1·h-1 | 对二甲苯,95% | [ |
1 | Corma A, Iborra S, Velty A. Chemical routes for the transformation of biomass into chemicals[J]. Chemical Reviews, 2007, 107(6): 2411-2502. |
2 | Schutyser W, Renders T, van den Bosch S, et al. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading[J]. Chemical Society Reviews, 2018, 47(3): 852-908. |
3 | Zhang X H, Zhang Q, Wang T J, et al. Hydrodeoxygenation of lignin-derived phenolic compounds to hydrocarbons over Ni/SiO2-ZrO2 catalysts[J]. Bioresource Technology, 2013, 134: 73-80. |
4 | Serrano-Ruiz J C, Dumesic J A. Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels[J]. Energy Environ. Sci., 2011, 4(1): 83-99. |
5 | Ragauskas A J, Beckham G T, Biddy M J, et al. Lignin valorization: improving lignin processing in the biorefinery[J]. Science, 2014, 344(6185): 1246843. |
6 | Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering[J]. Chemical Reviews, 2006, 106(9): 4044-4098. |
7 | Venderbosch R H. A critical view on catalytic pyrolysis of biomass[J]. ChemSusChem, 2015, 8(8): 1306-1316. |
8 | 孔劼琛, 骆治成, 李愽龙, 等. 木质素解聚和加氢脱氧的进展[J]. 中国科学: 化学, 2015, 45(5): 510-525. |
Kong J C, Luo Z C, Li B L, et al. Advances in depolymerization and hydrodeoxygenation of lignin[J]. Scientia Sinica (Chimica), 2015, 45(5): 510-525. | |
9 | 朱晨杰, 杜风光, 应汉杰, 等. 木质纤维素基平台化合物催化转化制备液体燃料及燃料添加剂[J]. 化工学报, 2015, 66(8): 2784-2794. |
Zhu C J, Du F G, Ying H J, et al. Catalytic production of liquid hydrocarbon fuels and fuel additives from lignocellulosic platform molecules[J]. CIESC Journal, 2015, 66(8): 2784-2794. | |
10 | Saidi M, Samimi F, Karimipourfard D, et al. Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation[J]. Energy Environ. Sci., 2014, 7(1): 103-129. |
11 | Yan N, Dyson P J. Transformation of biomass via the selective hydrogenolysis of C—O bonds by nanoscale metal catalysts[J]. Current Opinion in Chemical Engineering, 2013, 2(2): 178-183. |
12 | Alonso D M, Wettstein S G, Dumesic J A. Bimetallic catalysts for upgrading of biomass to fuels and chemicals[J]. Chemical Society Reviews, 2012, 41(24): 8075-8098. |
103 | Xiong K, Lee W S, Bhan A, et al. Molybdenum carbide as a highly selective deoxygenation catalyst for converting furfural to 2-methylfuran[J]. ChemSusChem, 2014, 7(8): 2146-2149. |
104 | Lin Z X, Chen R, Qu Z P, et al. Hydrodeoxygenation of biomass-derived oxygenates over metal carbides: from model surfaces to powder catalysts[J]. Green Chemistry, 2018, 20(12): 2679-2696. |
13 | Nimmanwudipong T, Aydin C, Lu J, et al. Selective hydrodeoxygenation of guaiacol catalyzed by platinum supported on magnesium oxide[J]. Catalysis Letters, 2012, 142(10): 1190-1196. |
14 | 王荀, 吕永康. 愈创木酚催化氢解制取苯酚研究进展[J]. 现代化工, 2019, 39(4): 36-39, 41. |
Wang X, Lyu Y K. Advances in phenol production through catalytic hydrogenolysis of guaiacol[J]. Modern Chemical Industry, 2019, 39(4): 36-39, 41. | |
15 | 王芸, 邵珊珊, 张会岩, 等. 生物质模化物催化热解制取烯烃和芳香烃[J]. 化工学报, 2015, 66(8): 3022-3028. |
Wang Y, Shao S S, Zhang H Y, et al. Catalytic pyrolysis of biomass model compounds to olefins and aromatic hydrocarbons[J]. CIESC Journal, 2015, 66(8): 3022-3028. | |
16 | Nimmanwudipong T, Runnebaum R C, Block D E, et al. Catalytic conversion of guaiacol catalyzed by platinum supported on alumina: reaction network including hydrodeoxygenation reactions[J]. Energy & Fuels, 2011, 25(8): 3417-3427. |
17 | Sankar M, Dimitratos N, Miedziak P J, et al. Designing bimetallic catalysts for a green and sustainable future[J]. Chemical Society Reviews, 2012, 41(24): 8099-8139. |
18 | Huang Y, Ariga H, Zheng X L, et al. Silver-modulated SiO2-supported copper catalysts for selective hydrogenation of dimethyl oxalate to ethylene glycol[J]. Journal of Catalysis, 2013, 307: 74-83. |
19 | Rameshan C, Stadlmayr W, Penner S, et al. Hydrogen production by methanol steam reforming on copper boosted by zinc-assisted water activation[J]. Angewandte Chemie International Edition, 2012, 51(12): 3002-3006. |
20 | Trasarti A F, Bertero N M, Apesteguía C R, et al. Liquid-phase hydrogenation of acetophenone over silica-supported Ni, Co and Cu catalysts: influence of metal and solvent[J]. Applied Catalysis A: General, 2014, 475: 282-291. |
21 | Olcese R, Bettahar M M, Malaman B, et al. Gas-phase hydrodeoxygenation of guaiacol over iron-based catalysts. Effect of gases composition, iron load and supports (silica and activated carbon)[J]. Applied Catalysis B: Environmental, 2013, 129: 528-538. |
22 | Olcese R N, Bettahar M, Petitjean D, et al. Gas-phase hydrodeoxygenation of guaiacol over Fe/SiO2 catalyst[J]. Applied Catalysis B: Environmental, 2012, 115/116: 63-73. |
23 | Song W J, Liu Y S, Baráth E, et al. Synergistic effects of Ni and acid sites for hydrogenation and C—O bond cleavage of substituted phenols[J]. Green Chemistry, 2015, 17(2): 1204-1218. |
24 | Wan W M, Tackett B M, Chen J G. Reactions of water and C1 molecules on carbide and metal-modified carbide surfaces[J]. Chemical Society Reviews, 2017, 46(7): 1807-1823. |
25 | Gosselink R W, Stellwagen D R, Bitter J H. Tungsten-based catalysts for selective deoxygenation[J]. Angewandte Chemie International Edition, 2013, 52(19): 5089-5092. |
26 | Stellwagen D R, Bitter J H. Structure-performance relations of molybdenum- and tungsten carbide catalysts for deoxygenation[J]. Green Chemistry, 2015, 17(1): 582-593. |
27 | Choi J S, Bugli G, Djéga-Mariadassou G. Influence of the degree of carburization on the density of sites and hydrogenating activity of molybdenum carbides[J]. Journal of Catalysis, 2000, 193(2): 238-247. |
28 | 朱全力, 杨建, 季生福, 等. 过渡金属碳化物的研究进展[J]. 化学进展, 2004, 16(3): 382-385. |
Zhu Q L, Yang J, Ji S F, et al. Progress of transition metal carbides in heterogenous catalysis[J]. Progress in Chemistry, 2004, 16(3): 382-385. | |
29 | Elliott D C, Hart T R, Neuenschwander G G, et al. Catalytic hydroprocessing of biomass fast pyrolysis bio-oil to produce hydrocarbon products[J]. Environmental Progress & Sustainable Energy, 2009, 28(3): 441-449. |
30 | Oasmaa A, Czernik S. Fuel oil quality of biomass pyrolysis oils—state of the art for the end users[J]. Energy & Fuels, 1999, 13(4): 914-921. |
31 | Czernik S, Bridgwater A V. Overview of applications of biomass fast pyrolysis oil[J]. Energy & Fuels, 2004, 18(2): 590-598. |
32 | Wang H M, Male J, Wang Y. Recent advances in hydrotreating of pyrolysis bio-oil and its oxygen-containing model compounds[J]. ACS Catalysis, 2013, 3(5): 1047-1070. |
33 | Wu S K, Lai P C, Lin Y C, et al. Atmospheric hydrodeoxygenation of guaiacol over alumina-, zirconia-, and silica-supported nickel phosphide catalysts[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(3): 349-358. |
34 | Hong Y K, Lee D W, Eom H J, et al. The catalytic activity of Pd/WOx/γ-Al2O3 for hydrodeoxygenation of guaiacol[J]. Applied Catalysis B: Environmental, 2014, 150/151: 438-445. |
35 | 练彩霞, 李凝, 蒋武, 等. 生物质油催化加氢脱氧(HDO)反应机理及催化剂研究进展[J]. 化工进展, 2020, 39(S1): 153-162. |
Lian C X, Li N, Jiang W, et al. Research progress on reaction mechanism and catalysts for catalytic hydrodeoxygenation (HDO) of biomass oil[J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 153-162. | |
36 | Furimsky E. Catalytic hydrodeoxygenation[J]. Applied Catalysis A: General, 2000, 199(2): 147-190. |
37 | 徐海升, 何丽娟, 黄国强. 碳化物类生物油加氢脱氧催化剂的研究进展[J]. 精细石油化工, 2020, 37(1): 71-76. |
Xu H S, He L J, Huan G Q. Research progress of carbide catalysts for hydrodeoxygenationofbio-oils[J]. Speciality Petrochemicals, 2020, 37(1): 71-76. | |
105 | Lu Q, Chen C J, Luc W, et al. Ordered mesoporous metal carbides with enhanced anisole hydrodeoxygenation selectivity[J]. ACS Catalysis, 2016, 6(6): 3506-3514. |
38 | Pang J F, Sun J M, Zheng M Y, et al. Transition metal carbide catalysts for biomass conversion: a review[J]. Applied Catalysis B: Environmental, 2019, 254: 510-522. |
39 | Zhong Y, Xia X, Shi F, et al. Transition metal carbides and nitrides in energy storage and conversion[J]. Advanced Science, 2016, 3(5): 1500286. |
40 | Wang Y, Zhang H, Yang X H, et al. Recent advances in transition-metal carbides: from controlled preparation to hydrogen evolution reaction application[J]. Chemistry - A European Journal, 2021, 27(1): 1-19. |
41 | 李玲, 王晓慧, 张雪, 等. 过渡金属碳化物催化材料研究进展[J]. 化工新型材料, 2018, 46(12): 56-62. |
Li L, Wang X H, Zhang X, et al. Research progress of transition metal carbide catalytic material[J]. New Chemical Materials, 2018, 46(12): 56-62. | |
42 | 陆强, 李文涛, 叶小宁, 等. W2C/AC催化快速热解松木磨木木质素[J]. 化工学报, 2016, 67(11): 4843-4850. |
Lu Q, Li W T, Ye X N, et al. Fast catalytic pyrolysis of pine milled wood lignin with W2C/AC[J]. CIESC Journal, 2016, 67(11): 4843-4850. | |
43 | Levy R B, Boudart M. Platinum-like behavior of tungsten carbide in surface catalysis[J]. Science, 1973, 181(4099): 547-549. |
44 | 甘赠国, 黄志宇, 庞纪峰. 过渡金属碳化物的催化研究进展[J]. 精细石油化工进展, 2007, 8(6): 37-41. |
Gan Z G, Huang Z Y, Pang J F. Research development on catalysis of transition metal carbides[J]. Advances in Fine Petrochemicals, 2007, 8(6): 37-41. | |
45 | Lee J S, Oyama S T, Boudart M. Molybdenum carbide catalysts (I): Synthesis of unsupported powders[J]. Journal of Catalysis, 1987, 106(1): 125-133. |
46 | Mo T, Xu J, Yang Y, et al. Effect of carburization protocols on molybdenum carbide synthesis and study on its performance in CO hydrogenation[J]. Catalysis Today, 2016, 261: 101-115. |
47 | Hanif A, Xiao T C, York A P E, et al. Study on the structure and formation mechanism of molybdenum carbides[J]. Chemistry of Materials, 2002, 14(3): 1009-1015. |
48 | Claridge J B, York A P E, Brungs A J, et al. Study of the temperature-programmed reaction synthesis of early transition metal carbide and nitride catalyst materials from oxide precursors[J]. Chemistry of Materials, 2000, 12(1): 132-142. |
49 | Xiao T C, York A P E, Coleman K S, et al. Effect of carburising agent on the structure of molybdenum carbides[J]. Journal of Materials Chemistry, 2001, 11(12): 3094-3098. |
50 | Hunt S T, Nimmanwudipong T, Román-Leshkov Y. Engineering non-sintered, metal-terminated tungsten carbide nanoparticles for catalysis[J]. Angewandte Chemie International Edition, 2014, 53(20): 5131-5136. |
51 | Gong Q, Wang Y, Hu Q, et al. Ultrasmall and phase-pure W2C nanoparticles for efficient electrocatalytic and photoelectrochemical hydrogen evolution[J]. Nature Communications, 2016, 7: 13216. |
52 | Li C Z, Zheng M Y, Wang A Q, et al. One-pot catalytic hydrocracking of raw woody biomass into chemicals over supported carbide catalysts: simultaneous conversion of cellulose, hemicellulose and lignin[J]. Energy Environ. Sci., 2012, 5(4): 6383-6390. |
53 | Liu R, Pang M, Chen X Z, et al. W2C nanorods with various amounts of vacancy defects: determination of catalytic active sites in the hydrodeoxygenation of benzofuran[J]. Catalysis Science & Technology, 2017, 7(6): 1333-1341. |
54 | Wang H Y, Liu S D, Liu B, et al. Carbon and Mo transformations during the synthesis of mesoporous Mo2C/carbon catalysts by carbothermal hydrogen reduction[J]. Journal of Solid State Chemistry, 2018, 258: 818-824. |
55 | Kim S K, Qiu Y, Zhang Y J, et al. Nanocomposites of transition-metal carbides on reduced graphite oxide as catalysts for the hydrogen evolution reaction[J]. Applied Catalysis B: Environmental, 2018, 235: 36-44. |
56 | Liang C H, Ying P L, Li C. Nanostructured β-Mo2C prepared by carbothermal hydrogen reduction on ultrahigh surface area carbon material[J]. Chemistry of Materials, 2002, 14(7): 3148-3151. |
57 | Han J X, Duan J Z, Chen P, et al. Nanostructured molybdenum carbides supported on carbon nanotubes as efficient catalysts for one-step hydrodeoxygenation and isomerization of vegetable oils[J]. Green Chemistry, 2011, 13(9): 2561-2568. |
58 | Jongerius A L, Gosselink R W, Dijkstra J, et al. Carbon nanofiber supported transition-metal carbide catalysts for the hydrodeoxygenation of guaiacol[J]. ChemCatChem, 2013, 5(10): 2964-2972. |
59 | Souza Macedo L, Stellwagen D R, Teixeira da Silva V, et al. Stability of transition-metal carbides in liquid phase reactions relevant for biomass-based conversion[J]. ChemCatChem, 2015, 7(18): 2816-2823. |
60 | Miao M, Pan J, He T, et al. Molybdenum carbide-based electrocatalysts for hydrogen evolution reaction[J]. Chemistry - A European Journal, 2017, 23(46): 10947-10961. |
61 | Wu H B, Xia B Y, Yu L, et al. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production[J]. Nature Communications, 2015, 6: 6512. |
62 | Shi Z P, Wang Y X, Lin H L, et al. Porous nanoMoC@graphite shell derived from a MOFs-directed strategy: an efficient electrocatalyst for the hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2016, 4(16): 6006-6013. |
63 | Wan J, Wu J B, Gao X, et al. Structure confined porous Mo2C for efficient hydrogen evolution[J]. Advanced Functional Materials, 2017, 27(45): 1703933. |
64 | Yu H, Fan H S, Wang J, et al. 3D ordered porous MoxC (x = 1 or 2) for advanced hydrogen evolution and Li storage[J]. Nanoscale, 2017, 9(21): 7260-7267. |
65 | Fang H H, Du J M, Tian C C, et al. Regioselective hydrogenolysis of aryl ether C—O bonds by tungsten carbides with controlled phase compositions[J]. Chemical Communications, 2017, 53(74): 10295-10298. |
66 | Fang H H, Zheng J W, Luo X L, et al. Product tunable behavior of carbon nanotubes-supported Ni-Fe catalysts for guaiacol hydrodeoxygenation[J]. Applied Catalysis A: General, 2017, 529: 20-31. |
67 | Ardiyanti A R, Khromova S A, Venderbosch R H, et al. Catalytic hydrotreatment of fast-pyrolysis oil using non-sulfided bimetallic Ni-Cu catalysts on a δ-Al2O3 support[J]. Applied Catalysis B: Environmental, 2012, 117/118: 105-117. |
68 | Bredenberg J B S, Huuska M, Räty J, et al. Hydrogenolysis and hydrocracking of the carbon-oxygen bond(Ⅰ): Hydrocracking of some simple aromatic O-compounds[J]. Journal of Catalysis, 1982, 77(1): 242-247. |
69 | Zhao C, Kou Y, Lemonidou A, et al. Highly selective catalytic conversion of phenolic bio-oil to alkanes[J]. Angewandte Chemie International Edition, 2009, 121(22): 4047-4050. |
70 | Moreira R, Ochoa E, Pinilla J, et al. Liquid-phase hydrodeoxygenation of guaiacol over Mo2C supported on commercial CNF. Effects of operating conditions on conversion and product selectivity[J]. Catalysts, 2018, 8(4): 127. |
71 | Li R, Shahbazi A, Wang L J, et al. Graphite encapsulated molybdenum carbide core/shell nanocomposite for highly selective conversion of guaiacol to phenolic compounds in methanol[J]. Applied Catalysis A: General, 2016, 528: 123-130. |
72 | Santillan-Jimenez E, Perdu M, Pace R, et al. Activated carbon, carbon nanofiber and carbon nanotube supported molybdenum carbide catalysts for the hydrodeoxygenation of guaiacol[J]. Catalysts, 2015, 5(1): 424-441. |
73 | Ma R, Cui K, Yang L, et al. Selective catalytic conversion of guaiacol to phenols over a molybdenum carbide catalyst[J]. Chemical Communications, 2015, 51(51): 10299-10301. |
74 | Fang H H, Roldan A, Tian C C, et al. Structural tuning and catalysis of tungsten carbides for the regioselective cleavage of CO bonds[J]. Journal of Catalysis, 2019, 369: 283-295. |
75 | Guo H W, Zhang B, Qi Z J, et al. Valorization of lignin to simple phenolic compounds over tungsten carbide: impact of lignin structure[J]. ChemSusChem, 2017, 10(3): 523-532. |
76 | Guo H W, Zhang B, Li C Z, et al. Tungsten carbide: a remarkably efficient catalyst for the selective cleavage of lignin C—O bonds[J]. ChemSusChem, 2016, 9(22): 3220-3229. |
77 | Molavian M R, Abdolmaleki A, Gharibi H, et al. Safe and green modified ostrich eggshell membranes as dual functional fuel cell membranes[J]. Energy & Fuels, 2017, 31(2): 2017-2023. |
78 | Chen C J, Bhan A. Mo2C modification by CO2, H2O, and O2: effects of oxygen content and oxygen source on rates and selectivity of m-cresol hydrodeoxygenation[J]. ACS Catalysis, 2017, 7(2): 1113-1122. |
79 | Boullosa-Eiras S, Lødeng R, Bergem H, et al. Catalytic hydrodeoxygenation (HDO) of phenol over supported molybdenum carbide, nitride, phosphide and oxide catalysts[J]. Catalysis Today, 2014, 223: 44-53. |
80 | Engelhardt J, Lyu P B, Nachtigall P, et al. The influence of water on the performance of molybdenum carbide catalysts in hydrodeoxygenation reactions: a combined theoretical and experimental study[J]. ChemCatChem, 2017, 9(11): 1985-1991. |
81 | Lee W S, Wang Z S, Wu R J, et al. Selective vapor-phase hydrodeoxygenation of anisole to benzene on molybdenum carbide catalysts[J]. Journal of Catalysis, 2014, 319: 44-53. |
82 | Iida T, Shetty M, Murugappan K, et al. Encapsulation of molybdenum carbide nanoclusters inside zeolite micropores enables synergistic bifunctional catalysis for anisole hydrodeoxygenation[J]. ACS Catalysis, 2017, 7(12): 8147-8151. |
83 | He L L, Qin Y, Lou H, et al. Highly dispersed molybdenum carbide nanoparticles supported on activated carbon as an efficient catalyst for the hydrodeoxygenation of vanillin[J]. RSC Advances, 2015, 5(54): 43141-43147. |
84 | Schaidle J A, Blackburn J, Farberow C A, et al. Experimental and computational investigation of acetic acid deoxygenation over oxophilic molybdenum carbide: surface chemistry and active site identity[J]. ACS Catalysis, 2016, 6(2): 1181-1197. |
85 | Baddour F G, Nash C P, Schaidle J A, et al. Synthesis of α-MoC1–x nanoparticles with a surface-modified SBA-15 hard template: determination of structure-function relationships in acetic acid deoxygenation[J]. Angewandte Chemie International Edition, 2016, 128(31): 9172-9175. |
86 | Sullivan M M, Bhan A. Acetone hydrodeoxygenation over bifunctional metallic–acidic molybdenum carbide catalysts[J]. ACS Catalysis, 2016, 6(2): 1145-1152. |
87 | Ren H, Yu W T, Salciccioli M, et al. Selective hydrodeoxygenation of biomass-derived oxygenates to unsaturated hydrocarbons using molybdenum carbide catalysts[J]. ChemSusChem, 2013, 6(5): 798-801. |
88 | Ren H, Chen Y, Huang Y L, et al. Tungsten carbides as selective deoxygenation catalysts: experimental and computational studies of converting C3 oxygenates to propene[J]. Green Chemistry, 2014, 16(2): 761-769. |
89 | Lin Z X, Wan W M, Yao S Y, et al. Cobalt-modified molybdenum carbide as a selective catalyst for hydrodeoxygenation of furfural[J]. Applied Catalysis B: Environmental, 2018, 233: 160-166. |
90 | Shilov I, Smirnov A, Bulavchenko O, et al. Effect of Ni–Mo carbide catalyst formation on furfural hydrogenation[J]. Catalysts, 2018, 8(11): 560. |
91 | Lee W S, Wang Z S, Zheng W Q, et al. Vapor phase hydrodeoxygenation of furfural to 2-methylfuran on molybdenum carbide catalysts[J]. Catalysis Science & Technology, 2014, 4(8): 2340-2352. |
92 | Mortensen P M, de Carvalho H W P, Grunwaldt J D, et al. Activity and stability of Mo2C/ZrO2 as catalyst for hydrodeoxygenation of mixtures of phenol and 1-octanol[J]. Journal of Catalysis, 2015, 328: 208-215. |
93 | Dai T, Li C Z, Li L, et al. Selective production of renewable para-xylene by tungsten carbide catalyzed atom-economic cascade reactions[J]. Angewandte Chemie International Edition, 2018, 57(7): 1808-1812. |
94 | Chen C J, Lee W S, Bhan A. Mo2C catalyzed vapor phase hydrodeoxygenation of lignin-derived phenolic compound mixtures to aromatics under ambient pressure[J]. Applied Catalysis A: General, 2016, 510: 42-48. |
95 | Li Y H, Fu J, Chen B H. Highly selective hydrodeoxygenation of anisole, phenol and guaiacol to benzene over nickel phosphide[J]. RSC Advances, 2017, 7(25): 15272-15277. |
96 | Remón J, Casales M, Gracia J, et al. Sustainable production of liquid biofuels and value-added platform chemicals by hydrodeoxygenation of lignocellulosic bio-oil over a carbon-neutral Mo2C/CNF catalyst[J]. Chemical Engineering Journal, 2021, 405: 126705. |
97 | Fang H H, Chen W K, Li S, et al. Tandem hydrogenolysis-hydrogenation of lignin-derived oxygenates over integrated dual catalysts with optimized interoperations[J]. ChemSusChem, 2019, 12(23): 5199-5206. |
98 | Routray K, Barnett K J, Huber G W. Hydrodeoxygenation of pyrolysis oils[J]. Energy Technology, 2017, 5(1): 80-93. |
99 | Duan H, Dong J, Gu X, et al. Hydrodeoxygenation of water-insoluble bio-oil to alkanes using a highly dispersed Pd-Mo catalyst[J]. Nature Communications, 2017, 8(1): 591. |
100 | Li X S, Zhang Y J, Xin Q, et al. Irreversible hydrogen uptake on Mo2N catalyst[J]. Reaction Kinetics and Catalysis Letters, 1996, 57(1): 177-182. |
101 | He Y, Laursen S. Trends in the surface and catalytic chemistry of transition-metal ceramics in the deoxygenation of a woody biomass pyrolysis model compound[J]. ACS Catalysis, 2017, 7(5): 3169-3180. |
102 | Shi Y, Yang Y, Li Y W, et al. Mechanisms of Mo2C(101)-catalyzed furfural selective hydrodeoxygenation to 2-methylfuran from computation[J]. ACS Catalysis, 2016, 6(10): 6790-6803. |
[1] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[2] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[3] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[4] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[5] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[6] | Maolin DONG, Lidong CHEN, Liulian HUANG, Weibing WU, Hongqi DAI, Huiyang BIAN. Research progress in preparation of lignonanocellulose by acid hydrotropes and their functional applications [J]. CIESC Journal, 2023, 74(6): 2281-2295. |
[7] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
[8] | Jiajing BAO, Hongfei BIE, Ziwei WANG, Rui XIAO, Dong LIU, Shiliang WU. The effects of adding long-chain ethers in n-heptane counterflow diffusion flames on the formation characteristics of soot precursors [J]. CIESC Journal, 2023, 74(4): 1680-1692. |
[9] | Haiqin LIU, Bowen LI, Zhe LING, Liang LIU, Juan YU, Yimin FAN, Qiang YONG. Facile preparation and properties of chemically modified galactomannan films via mild hydroxy-alkyne click reaction [J]. CIESC Journal, 2023, 74(3): 1370-1378. |
[10] | Lingxin ZU, Rongting HU, Xin LI, Yudao CHEN, Guanglin CHEN. Carbon release products and denitrification bioavailability from chemical components of woody biomass [J]. CIESC Journal, 2023, 74(3): 1332-1342. |
[11] | Jieyuan ZHENG, Xianwei ZHANG, Jintao WAN, Hong FAN. Synthesis and curing kinetic analysis of eugenol-based siloxane epoxy resin [J]. CIESC Journal, 2023, 74(2): 924-932. |
[12] | Jianxin CHEN, Ruijie ZHU, Nan SHENG, Chunyu ZHU, Zhonghao RAO. Preparation of cellulose-derived biomass porous carbon and its supercapacitor performance [J]. CIESC Journal, 2022, 73(9): 4194-4206. |
[13] | Zeguang HAO, Qian ZHANG, Zenglin GAO, Hongwen ZHANG, Zeyu PENG, Kai YANG, Litong LIANG, Wei HUANG. Study on synergistic effect of biomass and FCC slurry co-pyrolysis [J]. CIESC Journal, 2022, 73(9): 4070-4078. |
[14] | Dongwang ZHANG, Hairui YANG, Tuo ZHOU, Zhong HUANG, Shiyuan LI, Man ZHANG. Cold-state experimental study on ash deposition of convection heating surface of biomass boiler [J]. CIESC Journal, 2022, 73(8): 3731-3738. |
[15] | Xinhua LIU, Zhennan HAN, Jian HAN, Bin LIANG, Nan ZHANG, Shanwei HU, Dingrong BAI, Guangwen XU. Principle and technology of low-NO x decoupling combustion based on restructuring reactions [J]. CIESC Journal, 2022, 73(8): 3355-3368. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||