CIESC Journal ›› 2021, Vol. 72 ›› Issue (8): 4304-4313.DOI: 10.11949/0438-1157.20201913
• Surface and interface engineering • Previous Articles Next Articles
Guilong XIONG1,2(),Jingwen XIE1,2,Linjun YANG3
Received:
2020-12-25
Revised:
2021-03-29
Online:
2021-08-05
Published:
2021-08-05
Contact:
Guilong XIONG
通讯作者:
熊桂龙
作者简介:
熊桂龙(1981—),男,博士,副教授,基金资助:
CLC Number:
Guilong XIONG, Jingwen XIE, Linjun YANG. Numerical simulation of effect of roughness on heterogeneous nucleation of water vapor on fine particle surface[J]. CIESC Journal, 2021, 72(8): 4304-4313.
熊桂龙, 谢静雯, 杨林军. 粗糙度对水汽在细颗粒表面异质核化影响的数值模拟[J]. 化工学报, 2021, 72(8): 4304-4313.
Add to citation manager EndNote|Ris|BibTeX
不同地域的燃煤电站细颗粒物样品 | θ/(°) | cosθ |
---|---|---|
内蒙古 | 40.1 | 0.765 |
达州 | 39.4 | 0.773 |
淮安 | 38.5 | 0.782 |
南京 | 38.5 | 0.783 |
榆林 | 38.4 | 0.784 |
荆门 | 38.3 | 0.785 |
嘉兴 | 35.7 | 0.812 |
Table 1 Macroscopic contact angle and cosine values of particles in different coal-fired power stations
不同地域的燃煤电站细颗粒物样品 | θ/(°) | cosθ |
---|---|---|
内蒙古 | 40.1 | 0.765 |
达州 | 39.4 | 0.773 |
淮安 | 38.5 | 0.782 |
南京 | 38.5 | 0.783 |
榆林 | 38.4 | 0.784 |
荆门 | 38.3 | 0.785 |
嘉兴 | 35.7 | 0.812 |
1 | 杨洪斌, 邹旭东, 汪宏宇, 等. 大气环境中PM2.5的研究进展与展望[J]. 气象与环境学报, 2012, 28(3): 77-82. |
Yang H B, Zou X D, Wang H Y, et al. Study progress on PM2.5 in atmospheric environment[J]. Journal of Meteorology and Environment, 2012, 28(3): 77-82. | |
2 | Curtis L, Rea W, Smith-Willis P, et al. Adverse health effects of outdoor air pollutants[J]. Environment International, 2006, 32(6): 815-830. |
3 | 董晨, 宋伟民, 施烨闻. PM2.5颗粒物引起血管内皮细胞氧化损伤的研究[J]. 卫生研究, 2005, 34(2): 169-171. |
Dong C, Song W M, Shi Y W. Study on the oxidative injury of the vascular endothelial cell affected by PM2.5[J]. Journal of Hygiene Research, 2005, 34(2): 169-171. | |
4 | 熊桂龙, 李水清, 陈晟, 等. 增强PM2.5脱除的新型电除尘技术的发展[J]. 中国电机工程学报, 2015, 35(9): 2217-2223. |
Xiong G L, Li S Q, Chen S, et al. Development of advanced electrostatic precipitation technologies for reducing PM2.5 emissions from coal-fired power plants[J]. Proceedings of the CSEE, 2015, 35(9): 2217-2223. | |
5 | 陈厚涛, 赵兵, 徐进, 等. 燃煤飞灰超细颗粒物声波团聚清除的实验研究[J]. 中国电机工程学报, 2007, 27(35): 28-32. |
Chen H T, Zhao B, Xu J, et al. Experimental study on acoustic agglomeration of ultrafine fly ash particles[J]. Proceedings of the CSEE, 2007, 27(35): 28-32. | |
6 | 王雪, 吕韩雷, 朱廷钰, 等. 细颗粒物电凝并技术研究进展[J]. 煤化工, 2016, 44(3): 51-54. |
Wang X, Lv H L, Zhu T Y, et al. Development of fine particulate matter electrical agglomeration technology[J]. Coal Chemical Industry, 2016, 44(3): 51-54. | |
7 | 何叶青, 周寿增, 宋琪, 等. Nd-Fe-B粉末颗粒间的磁团聚现象及有限元模拟计算[J]. 功能材料, 2002, 33(2): 154-156. |
He Y Q, Zhou S Z, Song Q, et al. Magnetic agglomeration interaction among particles of Nd-Fe-B powders and its finite element calculation[J]. Journal of Functional Materials, 2002, 33(2): 154-156. | |
8 | Raza G, Amjad M, Kaur I, et al. Stability and aggregation kinetics of titania nanomaterials under environmentally realistic conditions[J]. Environmental Science & Technology, 2016, 50(16): 8462-8472. |
9 | 刘勇, 赵汶, 刘瑞, 等. 化学团聚促进电除尘脱除PM2.5的实验研究[J]. 化工学报, 2014, 65(9): 3609-3616. |
Liu Y, Zhao W, Liu R, et al. Improving removal of PM2.5 by electrostatic precipitator with chemical agglomeration[J]. CIESC Journal, 2014, 65(9): 3609-3616. | |
10 | 鲍静静, 许家菱, 唐继国, 等. 水汽相变促进烟气中细颗粒物成核长大特性研究[J]. 工程科学与技术, 2017, 49(5): 171-177. |
Bao J J, Xu J L, Tang J G, et al. Study on the nucleation and growth of fine particles in flue gas promoted by heterogeneous condensation of water vapor[J]. Advanced Engineering Sciences, 2017, 49(5): 171-177. | |
11 | 杨林军, 颜金培, 沈湘林. 蒸汽相变促进燃烧源PM2.5凝并长大的研究现状及展望[J]. 现代化工, 2005, 25(11): 22-24, 26. |
Yang L J, Yan J P, Shen X L. Prospect and advances in growth of PM2.5 from combustion by vapor condensation[J]. Modern Chemical Industry, 2005, 25(11): 22-24, 26. | |
12 | 凡凤仙, 杨林军, 袁竹林, 等. 水汽在燃煤PM2.5表面异质核化特性数值预测[J]. 化工学报, 2007, 58(10): 2561-2566. |
Fan F X, Yang L J, Yuan Z L, et al. Numerical prediction of water vapor nucleation behavior on PM2.5 from coal combustion[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(10): 2561-2566. | |
13 | Fletcher N H. Size effect in heterogeneous nucleation[J]. The Journal of Chemical Physics, 1958, 29(3): 572-576. |
14 | Hienola A I, Winkler P M, Wagner P E, et al. Estimation of line tension and contact angle from heterogeneous nucleation experimental data[J]. The Journal of Chemical Physics, 2007, 126(9): 094705. |
15 | Singha S K, Das P K, Maiti B. Inclusion of line tension effect in classical nucleation theory for heterogeneous nucleation: a rigorous thermodynamic formulation and some unique conclusions[J]. The Journal of Chemical Physics, 2015, 142(10): 104706. |
16 | Iwamatsu M. Line-tension effects on heterogeneous nucleation on a spherical substrate and in a spherical cavity[J]. Langmuir, 2015, 31(13): 3861-3868. |
17 | Luo X, Fan Y, Qin F, et al. A kinetic model for heterogeneous condensation of vapor on an insoluble spherical particle[J]. The Journal of Chemical Physics, 2014, 140(2): 024708. |
18 | Fan Y, Qin F H, Luo X S, et al. A modified expression for the steady-state heterogeneous nucleation rate[J]. Journal of Aerosol Science, 2015, 87: 17-27. |
19 | 余廷芳, 高巨, 熊桂龙, 等. 基于分子运动学的水汽在细颗粒表面异质核化的数值模拟[J]. 化工学报, 2020, 71(7): 3071-3079. |
Yu T F, Gao J, Xiong G L, et al. Numerical simulation of heterogeneous nucleation of water vapor on surface of fine particles based on molecular kinetics[J]. CIESC Journal, 2020, 71(7): 3071-3079. | |
20 | Heidenreich S, Vogt U, Büttner H, et al. A novel process to separate submicron particles from gases—a cascade of packed columns[J]. Chemical Engineering Science, 2000, 55(15): 2895-2905. |
21 | 凡凤仙, 杨林军, 袁竹林, 等. 水汽在细微颗粒表面异质核化数值分析[J]. 东南大学学报(自然科学版), 2007, 37(5): 833-838. |
Fan F X, Yang L J, Yuan Z L, et al. Numerical analysis of water vapor nucleation on fine particles[J]. Journal of Southeast University (Natural Science Edition), 2007, 37(5): 833-838. | |
22 | Fan F X, Zhang S H, Peng Z B, et al. Numerical investigation of heterogeneous nucleation of water vapour on PM10 for particulate abatement[J]. The Canadian Journal of Chemical Engineering, 2019, 97(4): 930-939. |
23 | Fletcher N H. The Physics of Rainclouds[M]. London: Cambridge University Press, 1962, 29(3): 351-379. |
24 | 徐俊超, 于燕, 张军, 等. 液滴在燃煤细颗粒表面凝结的长大动力学特性[J]. 东南大学学报(自然科学版), 2017, 47(3): 506-512. |
Xu J C, Yu Y, Zhang J, et al. Kinetics study of droplet growth on surface of coal-fired fine particles[J]. Journal of Southeast University (Natural Science Edition), 2017, 47(3): 506-512. | |
25 | Määttänen A, Vehkamäki H, Lauri A, et al. Two-component heterogeneous nucleation kinetics and an application to Mars[J]. The Journal of Chemical Physics, 2007, 127(13): 134710. |
26 | Holten V, van Dongen M E H. Comparison between solutions of the general dynamic equation and the kinetic equation for nucleation and droplet growth[J]. The Journal of Chemical Physics, 2009, 130(1): 014102. |
27 | Kozísek Z, Demo P. Influence of vapor depletion on nucleation rate[J]. The Journal of Chemical Physics, 2007, 126(18): 184510. |
28 | Kalikmanov V I. Nucleation Theory[M]. Dordrecht: Springer Netherlands, 2013. |
29 | Pruppacher H R, Klett J D, Wang P K. Microphysics of clouds and precipitation[J]. Aerosol Science and Technology, 1998, 28(4): 381-382. |
30 | Seki J, Hasegawa H. The heterogeneous condensation of interstellar ice grains[J]. Astrophysics and Space Science, 1983, 94(1): 177-189. |
31 | Vehkamäki H, Määttänen A, Lauri A, et al. Technical note: the heterogeneous Zeldovich factor[J]. Atmospheric Chemistry and Physics, 2007, 7(2): 309-313. |
32 | Chen C C, Tao C J. Condensation of supersaturated water vapor on submicrometer particles of SiO2 and TiO2[J]. The Journal of Chemical Physics, 2000, 112(22): 9967-9977. |
33 | Chen C C, Guo M S, Tsai Y J, et al. Heterogeneous nucleation of water vapor on submicrometer particles of SiC, SiO2, and naphthalene[J]. Journal of Colloid and Interface Science, 1998, 198(2): 354-367. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||