CIESC Journal ›› 2021, Vol. 72 ›› Issue (10): 5330-5343.DOI: 10.11949/0438-1157.20210371
• Energy and environmental engineering • Previous Articles Next Articles
Chenlin MAO1(),Ping WANG1(),Prashant Shrotriya2,Hongkai HE1,Antonio Ferrante1,3
Received:
2021-03-12
Revised:
2021-04-27
Online:
2021-10-05
Published:
2021-10-05
Contact:
Ping WANG
毛晨林1(),王平1(),Shrotriya Prashant2,何宏凯1,Ferrante Antonio1,3
通讯作者:
王平
作者简介:
毛晨林(1996—),女,硕士研究生,基金资助:
CLC Number:
Chenlin MAO,Ping WANG,Prashant Shrotriya,Hongkai HE,Antonio Ferrante. Laminar flame speed and NO emission characteristics of premixed flames with different ammonia-containing fuels[J]. CIESC Journal, 2021, 72(10): 5330-5343.
毛晨林,王平,Shrotriya Prashant,何宏凯,Ferrante Antonio. 含氨燃料预混火焰的层流火焰速度及NO排放特性[J]. 化工学报, 2021, 72(10): 5330-5343.
Add to citation manager EndNote|Ris|BibTeX
Mechanism | Year | Fuel | Species | Reactions | Background | Experiment data |
---|---|---|---|---|---|---|
Xiao[ | 2017 | NH3/H2 | 24 | 91 | Modified Mathieu[ | No |
UT-LCS[ | 2018 | NH3/H2 | 32 | 213 | Song[ | No |
Okafor[ | 2019 | NH3/CH4 | 42 | 130 | GRI 3.0, Tian[ | Yes |
Li-Ⅰ[ | 2019 | NH3/CH4/H2 | 51 | 420 | AramcoMech2.0 , Shrestha[ | No |
Li-Ⅱ[ | 2019 | NH3/H2 | 28 | 213 | AramcoMech2.0, Shrestha[ | No |
Table 1 Reduced mechanism for combustion of NH3/CH4/H2
Mechanism | Year | Fuel | Species | Reactions | Background | Experiment data |
---|---|---|---|---|---|---|
Xiao[ | 2017 | NH3/H2 | 24 | 91 | Modified Mathieu[ | No |
UT-LCS[ | 2018 | NH3/H2 | 32 | 213 | Song[ | No |
Okafor[ | 2019 | NH3/CH4 | 42 | 130 | GRI 3.0, Tian[ | Yes |
Li-Ⅰ[ | 2019 | NH3/CH4/H2 | 51 | 420 | AramcoMech2.0 , Shrestha[ | No |
Li-Ⅱ[ | 2019 | NH3/H2 | 28 | 213 | AramcoMech2.0, Shrestha[ | No |
Mechanism | Species |
---|---|
Xiao[ | NO, N2O, O2, H2, AR, H, O, OH, HO2, H2O, H2O2, NO2, NH3, HNO, HONO, H2NO, N, NNH, NH2, NH, HNOH, HONO2, N2, |
UT-LCS[ | NO, NH3, H2, O2, H, O, OH, HO2, H2O, H2O2, NH2, NH, N, NNH, NH2OH, H2NO, HNOH, HNO, HON, NO2, HONO, HNO2, NO3, HONO2, N2O, |
Okafor[ | H2, H, O, O2, OH, H2O, HO2, H2O2, C, CH, CH2, CH2(S), CH3, CH4, CO, CO2, HCO, CH2O, CH2OH, CH3O, CH3OH, C2H2, C2H3, C2H4, C2H5, C2H6, HCCO, N, NH, NH2, NH3, N2H2, NNH, NO, NO2, N2O, HNO, HCN, N2, N2H3, CH2CHO, AR |
Li-Ⅰ[ | H2, H, O2, O, H2O, OH, H2O2, HO2, NO, NO2, N2O, HNO, HONO, H2NO, N2, HNOH, NH3, NH2, NH, N, N2H4, N2H3, N2H2, H2NN, NNH, NH2OH, HNO2, AR, CO, CO2, CH4, CH3, CH2, CH3O2H, CH3O2, CH3O, CH2OH, CH2O, HCO, C2H6, C2H5, C2H4, C2H3, CH2CHO, HCN, NCO, H2CN, HCNH, CH3NH2, CH2NH2, CH2NH |
Li-Ⅱ[ | H2, H, O2, O, H2O, OH, H2O2, HO2, NO, NO2, N2O, HNO, HONO, H2NO, N2, HNOH, NH3, NH2, NH, N, |
Table 2 Species of the reduced mechanism
Mechanism | Species |
---|---|
Xiao[ | NO, N2O, O2, H2, AR, H, O, OH, HO2, H2O, H2O2, NO2, NH3, HNO, HONO, H2NO, N, NNH, NH2, NH, HNOH, HONO2, N2, |
UT-LCS[ | NO, NH3, H2, O2, H, O, OH, HO2, H2O, H2O2, NH2, NH, N, NNH, NH2OH, H2NO, HNOH, HNO, HON, NO2, HONO, HNO2, NO3, HONO2, N2O, |
Okafor[ | H2, H, O, O2, OH, H2O, HO2, H2O2, C, CH, CH2, CH2(S), CH3, CH4, CO, CO2, HCO, CH2O, CH2OH, CH3O, CH3OH, C2H2, C2H3, C2H4, C2H5, C2H6, HCCO, N, NH, NH2, NH3, N2H2, NNH, NO, NO2, N2O, HNO, HCN, N2, N2H3, CH2CHO, AR |
Li-Ⅰ[ | H2, H, O2, O, H2O, OH, H2O2, HO2, NO, NO2, N2O, HNO, HONO, H2NO, N2, HNOH, NH3, NH2, NH, N, N2H4, N2H3, N2H2, H2NN, NNH, NH2OH, HNO2, AR, CO, CO2, CH4, CH3, CH2, CH3O2H, CH3O2, CH3O, CH2OH, CH2O, HCO, C2H6, C2H5, C2H4, C2H3, CH2CHO, HCN, NCO, H2CN, HCNH, CH3NH2, CH2NH2, CH2NH |
Li-Ⅱ[ | H2, H, O2, O, H2O, OH, H2O2, HO2, NO, NO2, N2O, HNO, HONO, H2NO, N2, HNOH, NH3, NH2, NH, N, |
1 | Rogelj J, Schaeffer M, Meinshausen M, et al. Zero emission targets as long-term global goals for climate protection[J]. Environmental Research Letters, 2015, 10(10): 105007. |
2 | Chiuta S, Everson R C, Neomagus H W J P, et al. Reactor technology options for distributed hydrogen generation via ammonia decomposition: a review[J]. International Journal of Hydrogen Energy, 2013, 38(35): 14968-14991. |
3 | Brandhorst H, Tatarchuk B, Cahela D, et al. Ammonia: it's transformation and effective utilization[C]//6th International Energy Conversion Engineering Conference (IECEC). Cleveland, Ohio: AIAA, 2008. |
4 | 曾少娟, 尚大伟, 余敏, 等. 离子液体在氨气分离回收中的应用及展望[J]. 化工学报, 2019, 70(3): 791-800. |
Zeng S J, Shang D W, Yu M, et al. Applications and perspectives of NH3 separation and recovery with ionic liquids[J]. CIESC Journal, 2019, 70(3): 791-800. | |
5 | 徐晓华, 许青枝, 黄桂凤, 等. RuO2/Ti阳极电化学氧化吸收氨废气[J]. 化工学报, 2016, 67(6): 2568-2574. |
Xu X H, Xu Q Z, Huang G F, et al. Removal of ammonia by absorption combined with electrochemical oxidation on RuO2/Ti anode[J]. CIESC Journal, 2016, 67(6): 2568-2574. | |
6 | Kobayashi H, Hayakawa A, Somarathne K D K A, et al. Science and technology of ammonia combustion[J]. Proceedings of the Combustion Institute, 2019, 37(1): 109-133. |
7 | Okafor E C, Naito Y, Colson S, et al. Experimental and numerical study of the laminar burning velocity of CH4-NH3-air premixed flames[J]. Combustion and Flame, 2018, 187: 185-198. |
8 | Okafor E C, Naito Y, Colson S, et al. Measurement and modelling of the laminar burning velocity of methane-ammonia-air flames at high pressures using a reduced reaction mechanism[J]. Combustion and Flame, 2019, 204: 162-175. |
9 | Ichikawa A, Hayakawa A, Kitagawa Y, et al. Laminar burning velocity and Markstein length of ammonia/hydrogen/air premixed flames at elevated pressures[J]. International Journal of Hydrogen Energy, 2015, 40(30): 9570-9578. |
10 | Kumar P, Meyer T R. Experimental and modeling study of chemical-kinetics mechanisms for H2-NH3-air mixtures in laminar premixed jet flames[J]. Fuel, 2013, 108: 166-176. |
11 | Han X L, Wang Z H, Costa M, et al. Experimental and kinetic modelling study of laminar burning velocities of NH3/air, NH3/H2/air, NH3/CO/air and NH3/CH4/air premixed flames[J]. Combustion and Flame, 2019, 206(8): 214-226. |
12 | Duynslaegher C, Contino F, Vandooren J, et al. Modeling of ammonia combustion at low pressure[J]. Combustion and Flame, 2012, 159(9): 2799-2805. |
13 | Konnov A A. Implementation of the NCN pathway of prompt-NO formation in the detailed reaction mechanism[J]. Combustion and Flame, 2009, 156(11): 2093-2105. |
14 | Xiao H, Howard M, Valera-Medina A, et al. Study on reduced chemical mechanisms of ammonia/methane combustion under gas turbine conditions[J]. Energy & Fuels, 2016, 30(10): 8701-8710. |
15 | Xiao H, Valera-Medina A, Bowen P J. Modeling combustion of ammonia/hydrogen fuel blends under gas turbine conditions[J]. Energy & Fuels, 2017, 31(8): 8631-8642. |
16 | Mathieu O, Petersen E L. Experimental and modeling study on the high-temperature oxidation of ammonia and related NOx chemistry[J]. Combustion and Flame, 2015, 162(3): 554-570. |
17 | Otomo J, Koshi M, Mitsumori T, et al. Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion[J]. International Journal of Hydrogen Energy, 2018, 43(5): 3004-3014. |
18 | Song Y, Hashemi H, Christensen J M, et al. Ammonia oxidation at high pressure and intermediate temperatures[J]. Fuel, 2016, 181: 358-365. |
19 | Tian Z Y, Li Y Y, Zhang L D, et al. An experimental and kinetic modeling study of premixed NH3/CH4/O2/Ar flames at low pressure[J]. Combustion and Flame, 2009, 156(7): 1413-1426. |
20 | Li R, Konnov A A, He G Q, et al. Chemical mechanism development and reduction for combustion of NH3/H2/CH4 mixtures[J]. Fuel, 2019, 257: 116059. |
21 | Shrestha K P, Seidel L, Zeuch T, et al. Detailed kinetic mechanism for the oxidation of ammonia including the formation and reduction of nitrogen oxides[J]. Energy & Fuels, 2018, 32(10): 10202-10217. |
22 | Kurata O, Iki N, Matsunuma T, et al. Performances and emission characteristics of NH3-air and NH3-CH4-air combustion gas-turbine power generations[J]. Proceedings of the Combustion Institute, 2017, 36(3): 3351-3359. |
23 | Lee J H, Kim J H, Park J H, et al. Studies on properties of laminar premixed hydrogen-added ammonia/air flames for hydrogen production[J]. International Journal of Hydrogen Energy, 2010, 35(3): 1054-1064. |
24 | Hayakawa A, Goto T, Mimoto R, et al. Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures[J]. Fuel, 2015, 159: 98-106. |
25 | Takizawa K, Takahashi A, Tokuhashi K, et al. Burning velocity measurements of nitrogen-containing compounds[J]. Journal of Hazardous Materials, 2008, 155(1/2): 144-152. |
26 | Pfahl U J, Ross M C, Shepherd J E, et al. Flammability limits,ignition energy,and flame speeds in H2-CH4-NH3-N2O-O2-N2 mixtures[J]. Combustion and Flame, 2000, 123(1/2): 140-158. |
27 | Zakaznov V F, Kursheva L A, Fedina Z I. Determination of normal flame velocity and critical diameter of flame extinction in ammonia-air mixture[J]. Combustion, Explosion and Shock Waves, 1978, 14(6): 710-713. |
28 | Ronney P D. Effect of chemistry and transport properties on near-limit flames at microgravity[J]. Combustion Science and Technology, 1988, 59(1/2/3): 123-141. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||