CIESC Journal ›› 2021, Vol. 72 ›› Issue (10): 5344-5353.DOI: 10.11949/0438-1157.20210502
• Energy and environmental engineering • Previous Articles Next Articles
Yu WANG1,2(),Guangwei YU1,3(),Ruqing JIANG1,2,Jiajia LIN1,2,Yin WANG1
Received:
2021-04-13
Revised:
2021-07-02
Online:
2021-10-05
Published:
2021-10-05
Contact:
Guangwei YU
王玉1,2(),余广炜1,3(),江汝清1,2,林佳佳1,2,汪印1
通讯作者:
余广炜
作者简介:
王玉(1996—),男,硕士研究生,基金资助:
CLC Number:
Yu WANG,Guangwei YU,Ruqing JIANG,Jiajia LIN,Yin WANG. Effect of particle size on phosphorus and heavy metals during the preparation of biochar from food waste biogas residue[J]. CIESC Journal, 2021, 72(10): 5344-5353.
王玉,余广炜,江汝清,林佳佳,汪印. 粒径对餐厨沼渣热解制备生物炭中磷和重金属的影响[J]. 化工学报, 2021, 72(10): 5344-5353.
Add to citation manager EndNote|Ris|BibTeX
Cf | 单一重金属污染程度 | Er | 单项潜在生态风险程度 | RI | 重金属潜在风险程度 |
---|---|---|---|---|---|
Cf≤1 | Er≤40 | RI≤150 | |||
1<Cf≤3 | 40<Er≤80 | 150<RI≤300 | |||
3<Cf≤6 | 80<Er≤160 | 300<RI≤600 | |||
6<Cf≤9 | 160<Er≤320 | RI>600 | |||
Cf>9 | Er>320 |
Table 1 Indices of potential ecological risk assessment
Cf | 单一重金属污染程度 | Er | 单项潜在生态风险程度 | RI | 重金属潜在风险程度 |
---|---|---|---|---|---|
Cf≤1 | Er≤40 | RI≤150 | |||
1<Cf≤3 | 40<Er≤80 | 150<RI≤300 | |||
3<Cf≤6 | 80<Er≤160 | 300<RI≤600 | |||
6<Cf≤9 | 160<Er≤320 | RI>600 | |||
Cf>9 | Er>320 |
样品 | 产率/% | 工业分析/% (质量) | 元素分析/% (质量) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
灰分(Ash) | 挥发分(VM) | 固定碳(FC) | C | H | N | S | H/C | C/N | ||
BR1 | — | 62.67 | 32.11 | 5.22 | 18.55 | 2.67 | 1.8 | 0.73 | 0.14 | 10.31 |
BR2 | — | 56.48 | 41.18 | 2.34 | 20.00 | 2.53 | 2.06 | 0.81 | 0.13 | 9.73 |
BR3 | — | 52.55 | 43.01 | 4.43 | 21.29 | 3.04 | 2.28 | 0.76 | 0.14 | 9.33 |
BRC1 | 74.78 | 81.71 | 14.73 | 3.56 | 12.01 | 2.08 | 0.55 | 0.48 | 0.17 | 21.95 |
BRC2 | 72.59 | 79.34 | 17.08 | 3.58 | 12.29 | 2.05 | 0.63 | 0.64 | 0.17 | 19.49 |
BRC3 | 65.47 | 76.98 | 20.83 | 2.19 | 13.23 | 1.47 | 0.70 | 0.54 | 0.11 | 18.95 |
Table 2 Physicochemical properties of BR and BRC
样品 | 产率/% | 工业分析/% (质量) | 元素分析/% (质量) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
灰分(Ash) | 挥发分(VM) | 固定碳(FC) | C | H | N | S | H/C | C/N | ||
BR1 | — | 62.67 | 32.11 | 5.22 | 18.55 | 2.67 | 1.8 | 0.73 | 0.14 | 10.31 |
BR2 | — | 56.48 | 41.18 | 2.34 | 20.00 | 2.53 | 2.06 | 0.81 | 0.13 | 9.73 |
BR3 | — | 52.55 | 43.01 | 4.43 | 21.29 | 3.04 | 2.28 | 0.76 | 0.14 | 9.33 |
BRC1 | 74.78 | 81.71 | 14.73 | 3.56 | 12.01 | 2.08 | 0.55 | 0.48 | 0.17 | 21.95 |
BRC2 | 72.59 | 79.34 | 17.08 | 3.58 | 12.29 | 2.05 | 0.63 | 0.64 | 0.17 | 19.49 |
BRC3 | 65.47 | 76.98 | 20.83 | 2.19 | 13.23 | 1.47 | 0.70 | 0.54 | 0.11 | 18.95 |
样品 | 含量/(mg/kg) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Na | Mg | Al | Si | S | Cl | K | Ca | Fe | |
BR1 | 7.33 | 6.67 | 11.91 | 15.27 | 6.15 | 23.90 | 3.95 | 338.4 | 10.81 |
BR2 | 7.44 | 5.58 | 10.85 | 13.89 | 6.58 | 24.57 | 3.97 | 306.5 | 10.59 |
BR3 | 8.68 | 4.92 | 9.12 | 11.32 | 5.18 | 28.15 | 4.10 | 266.5 | 10.60 |
BRC1 | 10.70 | 8.01 | 14.12 | 17.66 | 7.36 | 33.78 | 5.58 | 389.5 | 11.70 |
BRC2 | 10.68 | 7.78 | 12.97 | 17.50 | 6.66 | 45.03 | 6.84 | 377.1 | 12.45 |
BRC3 | 9.70 | 4.94 | 7.58 | 10.03 | 3.60 | 33.87 | 5.63 | 297.7 | 11.37 |
Table 3 The content of mineral elements of BR and BRC
样品 | 含量/(mg/kg) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Na | Mg | Al | Si | S | Cl | K | Ca | Fe | |
BR1 | 7.33 | 6.67 | 11.91 | 15.27 | 6.15 | 23.90 | 3.95 | 338.4 | 10.81 |
BR2 | 7.44 | 5.58 | 10.85 | 13.89 | 6.58 | 24.57 | 3.97 | 306.5 | 10.59 |
BR3 | 8.68 | 4.92 | 9.12 | 11.32 | 5.18 | 28.15 | 4.10 | 266.5 | 10.60 |
BRC1 | 10.70 | 8.01 | 14.12 | 17.66 | 7.36 | 33.78 | 5.58 | 389.5 | 11.70 |
BRC2 | 10.68 | 7.78 | 12.97 | 17.50 | 6.66 | 45.03 | 6.84 | 377.1 | 12.45 |
BRC3 | 9.70 | 4.94 | 7.58 | 10.03 | 3.60 | 33.87 | 5.63 | 297.7 | 11.37 |
样品 | 总磷TP/(mg/g) | 无机磷IP/(mg/g) | 有机磷OP/(mg/g) |
---|---|---|---|
BR1 | 19.484±0.443 | 18.437±0.469 | 0.932±0.012 |
BR2 | 18.544±0.221 | 17.120±0.379 | 0.908±0.020 |
BR3 | 16.349±0.384 | 15.526±0.358 | 0.881±0.017 |
BRC1 | 26.225±0.768 | 25.337±0.704 | 0.416±0.033 |
BRC2 | 25.754±0.384 | 25.128±0.191 | 0.316±0.006 |
BRC3 | 24.814±0.394 | 24.560±0.307 | 0.281±0.010 |
Table 4 The content of total phosphorus, inorganic phosphorus and organic phosphorus in BR and BRC
样品 | 总磷TP/(mg/g) | 无机磷IP/(mg/g) | 有机磷OP/(mg/g) |
---|---|---|---|
BR1 | 19.484±0.443 | 18.437±0.469 | 0.932±0.012 |
BR2 | 18.544±0.221 | 17.120±0.379 | 0.908±0.020 |
BR3 | 16.349±0.384 | 15.526±0.358 | 0.881±0.017 |
BRC1 | 26.225±0.768 | 25.337±0.704 | 0.416±0.033 |
BRC2 | 25.754±0.384 | 25.128±0.191 | 0.316±0.006 |
BRC3 | 24.814±0.394 | 24.560±0.307 | 0.281±0.010 |
样品 | 重金属总量/(mg/kg) | ||||||
---|---|---|---|---|---|---|---|
Cr | Cu | Zn | Cd | Pb | As | ||
BR1 | 65.20±2.33 | 14.36±1.33 | 38.08±0.81 | 0.96±0.02 | 5.04±0.55 | 7.31±0.14 | |
BR2 | 72.85±3.03 | 19.46±0.27 | 52.47±1.04 | 1.05±0.01 | 6.29±0.27 | 7.26±0.04 | |
BR3 | 71.72±1.60 | 20.84±0.47 | 58.15±4.57 | 1.03±0.02 | 6.00±0.26 | 7.88±0.10 | |
BRC1 | 78.86±2.84 | 17.98±0.15 | 74.92±1.99 | 0.18±0.01 | 5.59±0.23 | 7.44±0.13 | |
BRC2 | 83.34±0.84 | 19.53±0.27 | 74.42±4.24 | 0.22±0.01 | 4.98±0.19 | 9.04±0.10 | |
BRC3 | 86.46±4.05 | 17.87±0.82 | 70.18±2.73 | 0.19±0.02 | 4.61±0.26 | 11.93±0.07 | |
绿化种植土壤标准 (CJ/T340—2011(Ⅲ)) | pH<6.5 | 200 | 300 | 400 | 0.8 | 350 | 40 |
pH≥6.5 | 250 | 350 | 450 | 1.0 | 400 | 35 |
Table 5 Concentration of heavy metals before and after pyrolysis of different particle sizes
样品 | 重金属总量/(mg/kg) | ||||||
---|---|---|---|---|---|---|---|
Cr | Cu | Zn | Cd | Pb | As | ||
BR1 | 65.20±2.33 | 14.36±1.33 | 38.08±0.81 | 0.96±0.02 | 5.04±0.55 | 7.31±0.14 | |
BR2 | 72.85±3.03 | 19.46±0.27 | 52.47±1.04 | 1.05±0.01 | 6.29±0.27 | 7.26±0.04 | |
BR3 | 71.72±1.60 | 20.84±0.47 | 58.15±4.57 | 1.03±0.02 | 6.00±0.26 | 7.88±0.10 | |
BRC1 | 78.86±2.84 | 17.98±0.15 | 74.92±1.99 | 0.18±0.01 | 5.59±0.23 | 7.44±0.13 | |
BRC2 | 83.34±0.84 | 19.53±0.27 | 74.42±4.24 | 0.22±0.01 | 4.98±0.19 | 9.04±0.10 | |
BRC3 | 86.46±4.05 | 17.87±0.82 | 70.18±2.73 | 0.19±0.02 | 4.61±0.26 | 11.93±0.07 | |
绿化种植土壤标准 (CJ/T340—2011(Ⅲ)) | pH<6.5 | 200 | 300 | 400 | 0.8 | 350 | 40 |
pH≥6.5 | 250 | 350 | 450 | 1.0 | 400 | 35 |
样品 | 重金属浸出量/(mg/L) | |||||
---|---|---|---|---|---|---|
Cr | Cu | Zn | Cd | Pb | As | |
BR1 | 0.038±0.001 | 0.131±0.012 | 0.036±0.011 | 0.004±0.000 | 0.000±0.000 | 0.090±0.004 |
BR2 | 0.059±0.007 | 0.180±0.007 | 0.032±0.004 | 0.004±0.001 | 0.000±0.000 | 0.135±0.009 |
BR3 | 0.054±0.002 | 0.279±0.037 | 0.038±0.005 | 0.003±0.000 | 0.000±0.000 | 0.159±0.001 |
BRC1 | 0.078±0.008 | 0.006±0.002 | 0.044±0.007 | 0.002±0.000 | 0.001±0.000 | 0.020±0.002 |
BRC2 | 0.090±0.008 | 0.005±0.002 | 0.039±0.014 | 0.003±0.000 | 0.001±0.000 | 0.033±0.002 |
BRC3 | 0.096±0.003 | 0.004±0.000 | 0.049±0.017 | 0.004±0.000 | 0.001±0.000 | 0.036±0.001 |
阈值① | 5 | — | 5 | 1 | 5 | 5 |
Table 6 Leaching concentrations of heavy metals in the different mesh of BR and BRC for TCLP tests
样品 | 重金属浸出量/(mg/L) | |||||
---|---|---|---|---|---|---|
Cr | Cu | Zn | Cd | Pb | As | |
BR1 | 0.038±0.001 | 0.131±0.012 | 0.036±0.011 | 0.004±0.000 | 0.000±0.000 | 0.090±0.004 |
BR2 | 0.059±0.007 | 0.180±0.007 | 0.032±0.004 | 0.004±0.001 | 0.000±0.000 | 0.135±0.009 |
BR3 | 0.054±0.002 | 0.279±0.037 | 0.038±0.005 | 0.003±0.000 | 0.000±0.000 | 0.159±0.001 |
BRC1 | 0.078±0.008 | 0.006±0.002 | 0.044±0.007 | 0.002±0.000 | 0.001±0.000 | 0.020±0.002 |
BRC2 | 0.090±0.008 | 0.005±0.002 | 0.039±0.014 | 0.003±0.000 | 0.001±0.000 | 0.033±0.002 |
BRC3 | 0.096±0.003 | 0.004±0.000 | 0.049±0.017 | 0.004±0.000 | 0.001±0.000 | 0.036±0.001 |
阈值① | 5 | — | 5 | 1 | 5 | 5 |
样品 | 单一金属污染系数Cf | 单项潜在生态风险系数Er | 重金属潜在生态风险指数RI | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cr | Cu | Zn | Cd | Pb | As | Cr | Cu | Zn | Cd | Pb | As | ||
BR1 | 0.421 | 1.798 | 0.375 | 1.529 | 0.008 | 1.434 | 0.842 | 8.991 | 0.375 | 45.875 | 0.041 | 14.338 | 70.462 |
BR2 | 0.473 | 1.852 | 0.342 | 1.825 | 0.004 | 2.456 | 0.947 | 9.262 | 0.342 | 54.743 | 0.021 | 24.561 | 89.875 |
BR3 | 0.437 | 2.297 | 0.410 | 2.110 | 0.005 | 2.882 | 0.874 | 11.486 | 0.410 | 63.310 | 0.026 | 28.816 | 104.921 |
BRC1 | 0.356 | 1.512 | 1.143 | 1.920 | 0.022 | 0.942 | 0.712 | 7.561 | 1.143 | 57.606 | 0.108 | 9.415 | 76.545 |
BRC2 | 0.358 | 1.394 | 1.120 | 1.691 | 0.024 | 1.292 | 0.716 | 6.968 | 1.120 | 50.722 | 0.120 | 12.920 | 72.566 |
BRC3 | 0.403 | 1.098 | 0.951 | 1.765 | 0.029 | 1.739 | 0.806 | 5.488 | 0.951 | 52.964 | 0.143 | 17.394 | 77.745 |
Table 7 Potential ecological risk assessment indices of heavy metals in BR and BRC
样品 | 单一金属污染系数Cf | 单项潜在生态风险系数Er | 重金属潜在生态风险指数RI | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cr | Cu | Zn | Cd | Pb | As | Cr | Cu | Zn | Cd | Pb | As | ||
BR1 | 0.421 | 1.798 | 0.375 | 1.529 | 0.008 | 1.434 | 0.842 | 8.991 | 0.375 | 45.875 | 0.041 | 14.338 | 70.462 |
BR2 | 0.473 | 1.852 | 0.342 | 1.825 | 0.004 | 2.456 | 0.947 | 9.262 | 0.342 | 54.743 | 0.021 | 24.561 | 89.875 |
BR3 | 0.437 | 2.297 | 0.410 | 2.110 | 0.005 | 2.882 | 0.874 | 11.486 | 0.410 | 63.310 | 0.026 | 28.816 | 104.921 |
BRC1 | 0.356 | 1.512 | 1.143 | 1.920 | 0.022 | 0.942 | 0.712 | 7.561 | 1.143 | 57.606 | 0.108 | 9.415 | 76.545 |
BRC2 | 0.358 | 1.394 | 1.120 | 1.691 | 0.024 | 1.292 | 0.716 | 6.968 | 1.120 | 50.722 | 0.120 | 12.920 | 72.566 |
BRC3 | 0.403 | 1.098 | 0.951 | 1.765 | 0.029 | 1.739 | 0.806 | 5.488 | 0.951 | 52.964 | 0.143 | 17.394 | 77.745 |
1 | Li Y Y, Manandhar A, Li G X, et al. Life cycle assessment of integrated solid state anaerobic digestion and composting for on-farm organic residues treatment[J]. Waste Management, 2018, 76: 294-305. |
2 | 何品晶, 周琪, 吴铎, 等. 餐厨垃圾和厨余垃圾厌氧消化产生沼渣的脱水性能分析[J]. 化工学报, 2013, 64(10): 3775-3781. |
He P J, Zhou Q, Wu D, et al. Dewaterability of digestate produced from restaurant food waste and household kitchen waste anaerobic digestion[J]. CIESC Journal, 2013, 64(10): 3775-3781. | |
3 | Li C X, Li J, Pan L J, et al. Treatment of digestate residues for energy recovery and biochar production: from lab to pilot-scale verification[J]. Journal of Cleaner Production, 2020, 265: 121852. |
4 | 李杰, 潘兰佳, 余广炜, 等. 污泥中抗生素热解特性及动力学分析[J]. 环境工程学报, 2017, 11(9): 5213-5219. |
Li J, Pan L J, Yu G W, et al. Pyrolysis characteristics and kinetics analysis of several antibiotics in sludge[J]. Chinese Journal of Environmental Engineering, 2017, 11(9): 5213-5219. | |
5 | Zeng Z W, Tan X F, Liu Y G, et al. Comprehensive adsorption studies of doxycycline and ciprofloxacin antibiotics by biochars prepared at different temperatures[J]. Frontiers in Chemistry, 2018, 6: 80. |
6 | Berge N D, Ro K S, Mao J D, et al. Hydrothermal carbonization of municipal waste streams[J]. Environmental Science & Technology, 2011, 45(13): 5696-5703. |
7 | 王亮才, 马欢欢, 周建斌. 炭化工艺对脱水沼渣炭理化性质的影响[J]. 化工进展, 2019, 38(3): 1545-1551. |
Wang L C, Ma H H, Zhou J B. Effect of carbonization process on physiochemical properties of digestate[J]. Chemical Industry and Engineering Progress, 2019, 38(3): 1545-1551. | |
8 | Hung C Y, Tsai W T, Chen J W, et al. Characterization of biochar prepared from biogas digestate[J]. Waste Management, 2017, 66: 53-60. |
9 | 葛振, 魏源送, 刘建伟, 等. 沼渣特性及其资源化利用探究[J]. 中国沼气, 2014, 32(3): 74-82. |
Ge Z, Wei Y S, Liu J W, et al. Characteristics of digestate and utilization: an overview[J]. China Biogas, 2014, 32(3): 74-82. | |
10 | Manyà J J. Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs[J]. Environmental Science & Technology, 2012, 46(15): 7939-7954. |
11 | Ma Y Q, Yin Y, Liu Y. A holistic approach for food waste management towards zero-solid disposal and energy/resource recovery[J]. Bioresource Technology, 2017, 228: 56-61. |
12 | Li B, Yin T L, Udugama I A, et al. Food waste and the embedded phosphorus footprint in China[J]. Journal of Cleaner Production, 2020, 252: 119909. |
13 | 燕燕, 徐苏云, 左刘泉, 等. 猪粪沼渣制备生物炭的磷形态转化分析[J]. 浙江农业科学, 2020, 61(4): 772-775. |
Yan Y, Xu S Y, Zuo L Q, et al. Phosphorus form transformation during the production of biochar from digested swine manure[J]. Journal of Zhejiang Agricultural Sciences, 2020, 61(4):772-775. | |
14 | Alghashm Shakib. 餐厨垃圾沼渣炭化及其对磷和毒死蜱的吸附与土壤肥效研究[D]. 上海: 上海交通大学, 2019. |
Shakib A. Preparation of biochar from anaerobically digested food waste and its potential use in phosphorus/chlorpyrifos adsorption and soil amendment[D]. Shanghai: Shanghai Jiao Tong University, 2019. | |
15 | Zuo L Q, Lin R P, Shi Q, et al. Evaluation of the bioavailability of heavy metals and phosphorus in biochar derived from manure and manure digestate[J]. Water, Air, & Soil Pollution, 2020, 231(11): 1-11. |
16 | Liu J X, Huang S M, Chen K, et al. Preparation of biochar from food waste digestate: pyrolysis behavior and product properties[J]. Bioresource Technology, 2020, 302: 122841. |
17 | Bruun S, Harmer S L, Bekiaris G, et al. The effect of different pyrolysis temperatures on the speciation and availability in soil of P in biochar produced from the solid fraction of manure[J]. Chemosphere, 2017, 169: 377-386. |
18 | Jiang B N, Lin Y Q, Mbog J C. Biochar derived from swine manure digestate and applied on the removals of heavy metals and antibiotics[J]. Bioresource Technology, 2018, 270: 603-611. |
19 | 王兴栋, 张斌, 余广炜, 等. 不同粒径污泥热解制备生物炭及其特性分析[J]. 化工学报, 2016, 67(11): 4808-4816. |
Wang X D, Zhang B, Yu G W, et al. Preparation of biochar with different particle sized sewage sludge and its characteristics[J]. CIESC Journal, 2016, 67(11): 4808-4816. | |
20 | Hedley M J, Stewart J W B, Chauhan B S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations[J]. Soil Science Society of America Journal, 1982, 46(5): 970-976. |
21 | 李国华, 张福锁, 李海港. 畜禽粪便中磷不同组份的测定方法研究进展[J]. 土壤通报, 2013, 44(3): 760-768. |
Li G H, Zhang F S, Li H G. Research progress on methods for determination of phosphorus components in animal manure[J]. Chinese Journal of Soil Science, 2013, 44(3): 760-768. | |
22 | Wang X D, Li C X, Zhang B, et al. Migration and risk assessment of heavy metals in sewage sludge during hydrothermal treatment combined with pyrolysis[J]. Bioresource Technology, 2016, 221: 560-567. |
23 | Wang X D, Chang V W C, Li Z W, et al. Co-pyrolysis of sewage sludge and organic fractions of municipal solid waste: synergistic effects on biochar properties and the environmental risk of heavy metals[J]. Journal of Hazardous Materials, 2021, 412: 125200. |
24 | Jin J W, Li Y N, Zhang J Y, et al. Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge[J]. Journal of Hazardous Materials, 2016, 320: 417-426. |
25 | Demirbaş A. Gaseous products from biomass by pyrolysis and gasification: effects of catalyst on hydrogen yield[J]. Energy Conversion and Management, 2002, 43(7): 897-909. |
26 | 田爽爽. 生物炭制备过程中养分元素迁移转化机制研究[D]. 武汉: 华中农业大学, 2016. |
Tian S S. Study on the transformation mechanism of nutrient element buring the preparation of biochar[D]. Wuhan: Huazhong Agricultural University, 2016. | |
27 | Liu D S, Zhu H Z, Wu K M, et al. Understanding the effect of particle size of waste concrete powder on phosphorus removal efficiency[J]. Construction and Building Materials, 2020, 236: 117526. |
28 | Zhang H L, Sheng G P, Fang W, et al. Calcium effect on the metabolic pathway of phosphorus accumulating organisms in enhanced biological phosphorus removal systems[J]. Water Research, 2015, 84: 171-180. |
29 | 孟详东, 黄群星, 严建华, 等. 磷在污泥热解过程中的迁移转化[J]. 化工学报, 2018, 69(7): 3208-3215. |
Meng X D, Huang Q X, Yan J H, et al. Migration and transformation of phosphorus during pyrolysis process of sewage sludge[J]. CIESC Journal, 2018, 69(7):3208-3215. | |
30 | Andrieux F, Aminot A. A two-year survey of phosphorus speciation in the sediments of the Bay of Seine (France)[J]. Continental Shelf Research, 1997, 17(10): 1229-1245. |
31 | Qian T T, Li D C, Jiang H. Thermochemical behavior of tris(2-butoxyethyl) phosphate (TBEP) during Co-pyrolysis with biomass[J]. Environmental Science & Technology, 2014, 48(18): 10734-10742. |
32 | Huang R X, Fang C, Zhang B, et al. Transformations of phosphorus speciation during (hydro)thermal treatments of animal manures[J]. Environmental Science & Technology, 2018, 52(5): 3016-3026. |
33 | van Wesenbeeck S, Prins W, Ronsse F, et al. Sewage sludge carbonization for biochar applications. fate of heavy metals[J]. Energy & Fuels, 2014, 28(8): 5318-5326. |
34 | Wang X D, Li C X, Li Z W, et al. Effect of pyrolysis temperature on characteristics, chemical speciation and risk evaluation of heavy metals in biochar derived from textile dyeing sludge[J]. Ecotoxicology and Environmental Safety, 2019, 168: 45-52. |
35 | Jin H M, Arazo R O, Gao J, et al. Leaching of heavy metals from fast pyrolysis residues produced from different particle sizes of sewage sludge[J]. Journal of Analytical and Applied Pyrolysis, 2014, 109: 168-175. |
36 | Mizutani S, Watanabe N, Sakai S, et al. Influence of particle size preparation of MSW incineration residues on heavy metal leaching behavior in leaching tests[J]. Environmental Sciences: an International Journal of Environmental Physiology and Toxicology, 2006, 13(6): 363-370. |
37 | Devi P, Saroha A K. Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals[J]. Bioresource Technology, 2014, 162: 308-315. |
38 | Wong J W C, Li K, Fang M, et al. Toxicity evaluation of sewage sludges in Hong Kong[J]. Environment International, 2001, 27(5): 373-380. |
39 | Zhang Z Y, Ju R, Zhou H T, et al. Migration characteristics of heavy metals during sludge pyrolysis[J]. Waste Management, 2021, 120: 25-32. |
[1] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[2] | Xiaoxiong FAN, Lifang HAO, Chuigang FAN, Songgeng LI. Study on the catalytic denitrification performance of low-temperature NH3-SCR over LaMnO3/biochar catalyst [J]. CIESC Journal, 2023, 74(9): 3821-3830. |
[3] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[4] | Xianheng YI, Wu ZHOU, Xiaoshu CAI, Tianyi CAI. Measurable range of nanoparticle concentration using optical fiber backward dynamic light scattering [J]. CIESC Journal, 2023, 74(8): 3320-3328. |
[5] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[6] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[7] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[8] | Mengbin ZHANG, Rui LI, Jiajie ZHANG, Suxia MA, Jiansheng ZHANG. Experimental study on dielectric properties of coal ash based on coplanar capacitance principle [J]. CIESC Journal, 2023, 74(7): 3028-3037. |
[9] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[10] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[11] | Jianhua ZHANG, Mengmeng CHEN, Yawen SUN, Yongzhen PENG. Efficient nitrogen and phosphorus removal from domestic wastewater via simultaneous partial nitritation and phosphorus removal combined Anammox [J]. CIESC Journal, 2023, 74(5): 2147-2156. |
[12] | Ruiheng WANG, Pinjing HE, Fan LYU, Hua ZHANG. Parameter comparison and optimization of three solid-liquid separation methods for washed air pollution control residues from municipal solid waste incinerators [J]. CIESC Journal, 2023, 74(4): 1712-1723. |
[13] | Simin YI, Yali MA, Weiqiang LIU, Jinshuai ZHANG, Yan YUE, Qiang ZHENG, Songyan JIA, Xue LI. Study on ammonia evaporation and hydration kinetics of microcrystalline magnesite [J]. CIESC Journal, 2023, 74(4): 1578-1586. |
[14] | Ruiqi LIU, Xitong ZHOU, Yue ZHANG, Ying HE, Jing GAO, Li MA. The construction and application of biosensor based on gold nanoparticles loaded SiO2-nanoflowers [J]. CIESC Journal, 2023, 74(3): 1247-1259. |
[15] | Ruizhe CHEN, Leilei CHENG, Jing GU, Haoran YUAN, Yong CHEN. Research progress in chemical recovery technology of fiber-reinforced polymer composites [J]. CIESC Journal, 2023, 74(3): 981-994. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||