CIESC Journal ›› 2021, Vol. 72 ›› Issue (9): 4730-4739.DOI: 10.11949/0438-1157.20210289
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Xiaolong HU(),Wenxue GONG,Yi PENG,Yang HU,Ying TANG,Hui HE,Wenyuan LI,Zhongxing ZHAO,Zhenxia ZHAO()
Received:
2021-02-25
Revised:
2021-05-17
Online:
2021-09-05
Published:
2021-09-05
Contact:
Zhenxia ZHAO
胡小龙(),公文学,彭艺,胡阳,汤颖,何辉,李文愿,赵钟兴,赵祯霞()
通讯作者:
赵祯霞
作者简介:
胡小龙(1995—),男,硕士研究生,基金资助:
CLC Number:
Xiaolong HU, Wenxue GONG, Yi PENG, Yang HU, Ying TANG, Hui HE, Wenyuan LI, Zhongxing ZHAO, Zhenxia ZHAO. Construction of NM88(D)/COF-OMe composite via ligand-induced interfacial growth strategy for highly efficient photo-Fenton degradation of antibiotic sulfamerazine under visible light[J]. CIESC Journal, 2021, 72(9): 4730-4739.
胡小龙, 公文学, 彭艺, 胡阳, 汤颖, 何辉, 李文愿, 赵钟兴, 赵祯霞. 配体诱导制备NM88(D)/COF-OMe复合材料及可见光芬顿联合降解抗生素磺胺甲嘧啶研究[J]. 化工学报, 2021, 72(9): 4730-4739.
Add to citation manager EndNote|Ris|BibTeX
Sample | SBET/ (m2/g) | Smic/ (m2/g) | Smeso/ (m2/g) | Smeso/Smic | Vt/ (cm3/g) | Vmic/ (cm3/g) |
---|---|---|---|---|---|---|
NM88 | 35.3 | 9.5 | 25.8 | 2.7 | 0.106 | 0.028 |
COF-OMe | 2166.7 | 698.9 | 1467.8 | 2.1 | 1.364 | 0.443 |
NM88(D) | 28.6 | 7.3 | 21.3 | 2.9 | 0.087 | 0.022 |
NM88/COF-OMe | 442.9 | 138.4 | 304.5 | 2.2 | 0.437 | 0.136 |
NM88(D)/COF-OMe | 639.9 | 159.9 | 480.0 | 3.0 | 0.613 | 0.153 |
Table 1 The pore structure parameters of different materials
Sample | SBET/ (m2/g) | Smic/ (m2/g) | Smeso/ (m2/g) | Smeso/Smic | Vt/ (cm3/g) | Vmic/ (cm3/g) |
---|---|---|---|---|---|---|
NM88 | 35.3 | 9.5 | 25.8 | 2.7 | 0.106 | 0.028 |
COF-OMe | 2166.7 | 698.9 | 1467.8 | 2.1 | 1.364 | 0.443 |
NM88(D) | 28.6 | 7.3 | 21.3 | 2.9 | 0.087 | 0.022 |
NM88/COF-OMe | 442.9 | 138.4 | 304.5 | 2.2 | 0.437 | 0.136 |
NM88(D)/COF-OMe | 639.9 | 159.9 | 480.0 | 3.0 | 0.613 | 0.153 |
Sample | C 1s/ %(at.) | N 1s/ %(at.) | O 1s/ %(at.) | Fe 2p/ %(at.) |
---|---|---|---|---|
NM88 | 59.17 | 6.92 | 29.00 | 4.90 |
COF-OMe | 84.32 | 6.92 | 8.76 | 0.00 |
NM88(D) | 59.30 | 6.67 | 29.21 | 4.82 |
NM88/COF-OMe | 67.73 | 6.40 | 22.64 | 3.23 |
NM88(D)/COF-OMe | 70.10 | 7.33 | 19.53 | 3.05 |
Table 2 Surface element (C, N, O and Fe) distribution of samples determined from XPS
Sample | C 1s/ %(at.) | N 1s/ %(at.) | O 1s/ %(at.) | Fe 2p/ %(at.) |
---|---|---|---|---|
NM88 | 59.17 | 6.92 | 29.00 | 4.90 |
COF-OMe | 84.32 | 6.92 | 8.76 | 0.00 |
NM88(D) | 59.30 | 6.67 | 29.21 | 4.82 |
NM88/COF-OMe | 67.73 | 6.40 | 22.64 | 3.23 |
NM88(D)/COF-OMe | 70.10 | 7.33 | 19.53 | 3.05 |
Fig.3 UV-Vis DRS spectra(a), plots of (ahv)1/2versus photon energy (hv)(b), electrochemical impedance spectroscopy(c) and PL spectra(d) for different materials
Fig.4 Photo-Fenton degradation of SMR(a), calculated degradation kinetics constants under visible light for different materials(b) and recycling performance of NM88(D)/COF-OMe(c)
Catalyst | Pollutant | Concentration/(mg/L) | V①/ml | Catalyst/mg | H2O2/ (mmol/L) | pH | k②×104/ (L/(mmol·min)) | Ref. |
---|---|---|---|---|---|---|---|---|
SBC | SMT③ | 10 | 78 | 40 | 10 | 7.4 | 1.1 | [ |
Fe2O3-CeO2 | SMR | 20 | 250 | 125 | 8 | 3.0 | 1.3 | [ |
CuFeO | SMT | 50 | 100 | 50 | 60 | 6.0 | 1.7 | [ |
CUS-MIL-100(Fe) | SMT | 20 | 80 | 40 | 6 | 3.0 | 3.1 | [ |
FeCu@C | SMT | 20 | 80 | 20 | 1.5 | 3.0 | 18.6 | [ |
NM88(D)/COF-OMe | SMR | 10 | 100 | 10 | 2 | 6.2 | 32.9 | this work |
Table 3 Comparison of degradation rate of similar sulfonamide antibiotics by different materials
Catalyst | Pollutant | Concentration/(mg/L) | V①/ml | Catalyst/mg | H2O2/ (mmol/L) | pH | k②×104/ (L/(mmol·min)) | Ref. |
---|---|---|---|---|---|---|---|---|
SBC | SMT③ | 10 | 78 | 40 | 10 | 7.4 | 1.1 | [ |
Fe2O3-CeO2 | SMR | 20 | 250 | 125 | 8 | 3.0 | 1.3 | [ |
CuFeO | SMT | 50 | 100 | 50 | 60 | 6.0 | 1.7 | [ |
CUS-MIL-100(Fe) | SMT | 20 | 80 | 40 | 6 | 3.0 | 3.1 | [ |
FeCu@C | SMT | 20 | 80 | 20 | 1.5 | 3.0 | 18.6 | [ |
NM88(D)/COF-OMe | SMR | 10 | 100 | 10 | 2 | 6.2 | 32.9 | this work |
1 | Batista A P S, Teixeira A C S C, Cooper W J, et al. Correlating the chemical and spectroscopic characteristics of natural organic matter with the photodegradation of sulfamerazine[J]. Water Research, 2016, 93: 20-29. |
2 | Wang J L, Zhuan R, Chu L B. The occurrence, distribution and degradation of antibiotics by ionizing radiation: an overview[J]. Science of the Total Environment, 2019, 646: 1385-1397. |
3 | Wang J L, Wang S Z. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. |
4 | Zhuang S T, Liu Y, Wang J L. Covalent organic frameworks as efficient adsorbent for sulfamerazine removal from aqueous solution[J]. Journal of Hazardous Materials, 2020, 383: 121126. |
5 | Wang J L, Wang S Z. Microbial degradation of sulfamethoxazole in the environment[J]. Applied Microbiology and Biotechnology, 2018, 102(8): 3573-3582. |
6 | Gao P, Chen X J, Hao M J, et al. Oxygen vacancy enhancing the Fe2O3-CeO2 catalysts in Fenton-like reaction for the sulfamerazine degradation under O2 atmosphere[J]. Chemosphere, 2019, 228: 521-527. |
7 | Liu Y, Tan N, Guo J R, et al. Catalytic activation of O2 by Al0-CNTs-Cu2O composite for Fenton-like degradation of sulfamerazine antibiotic at wide pH range[J]. Journal of Hazardous Materials, 2020, 396: 122751. |
8 | Chen Y, Yang Z, Liu Y B, et al. Fenton-like degradation of sulfamerazine at nearly neutral pH using Fe-Cu-CNTs and Al0-CNTs for in situ generation of H2O2/·OH/O2-·[J]. Chemical Engineering Journal, 2020, 396: 125329. |
9 | Chen J, Fu X Y, Chen H, et al. Simultaneous Gd2O3 clusters decoration and O-doping of g-C3N4 by solvothermal-polycondensation method for reinforced photocatalytic activity towards sulfamerazine[J]. Journal of Hazardous Materials, 2021, 402: 123780. |
10 | Fabiańska A, Białk-Bielińska A, Stepnowski P, et al. Electrochemical degradation of sulfonamides at BDD electrode: kinetics, reaction pathway and eco-toxicity evaluation[J]. Journal of Hazardous Materials, 2014, 280: 579-587. |
11 | Batista A P S, Pires F C C, Teixeira A C S C. Photochemical degradation of sulfadiazine, sulfamerazine and sulfamethazine: relevance of concentration and heterocyclic aromatic groups to degradation kinetics[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 286: 40-46. |
12 | Costa E P, Roccamante M, Amorim C C, et al. New trend on open solar photoreactors to treat micropollutants by photo-Fenton at circumneutral pH: increasing optical pathway[J]. Chemical Engineering Journal, 2020, 385: 123982. |
13 | Lu S, Liu L B, Demissie H, et al. Design and application of metal-organic frameworks and derivatives as heterogeneous Fenton-like catalysts for organic wastewater treatment: a review[J]. Environment International, 2021, 146: 106273. |
14 | Yuan R R, Yue C L, Qiu J L, et al. Highly efficient sunlight-driven reduction of Cr(Ⅵ) by TiO2@NH2-MIL-88B(Fe) heterostructures under neutral conditions[J]. Applied Catalysis B: Environmental, 2019, 251: 229-239. |
15 | Wang H, Wang H, Wang Z W, et al. Covalent organic framework photocatalysts: structures and applications[J]. Chemical Society Reviews, 2020, 49(12): 4135-4165. |
16 | Cai M K, Li Y L, Liu Q L, et al. One-step construction of hydrophobic MOFs@COFs core-shell composites for heterogeneous selective catalysis[J]. Advanced Science, 2019, 6(8): 1802365. |
17 | Lv S W, Liu J M, Li C Y, et al. Two novel MOFs@COFs hybrid-based photocatalytic platforms coupling with sulfate radical-involved advanced oxidation processes for enhanced degradation of bisphenol A[J]. Chemosphere, 2020, 243: 125378. |
18 | Horcajada P, Salles F, Wuttke S, et al. How linker’s modification controls swelling properties of highly flexible iron(Ⅲ) dicarboxylates MIL-88[J]. Journal of the American Chemical Society, 2011, 133(44): 17839-17847. |
19 | Shi X F, Yao Y J, Xu Y L, et al. Imparting catalytic activity to a covalent organic framework material by nanoparticle encapsulation[J]. ACS Applied Materials & Interfaces, 2017, 9(8): 7481-7488. |
20 | Shi L, Wang T, Zhang H B, et al. An amine-functionalized iron(III) metal-organic framework as efficient visible-light photocatalyst for Cr(Ⅵ) reduction[J]. Advanced Science, 2015, 2(3): 1500006. |
21 | Cho W, Park S, Oh M. Coordination polymer nanorods of Fe-MIL-88B and their utilization for selective preparation of hematite and magnetite nanorods[J]. Chemical Communications, 2011, 47(14): 4138. |
22 | Wang Y X, Zhong Z, Muhammad Y, et al. Defect engineering of NH2-MIL-88B(Fe) using different monodentate ligands for enhancement of photo-Fenton catalytic performance of acetamiprid degradation[J]. Chemical Engineering Journal, 2020, 398: 125684. |
23 | Zhang S, Yang Q, Liu X Y, et al. High-energy metal-organic frameworks (HE-MOFs): synthesis, structure and energetic performance[J]. Coordination Chemistry Reviews, 2016, 307: 292-312. |
24 | Tran T V, Nguyen V H, Nong L X, et al. Hexagonal Fe-based MIL-88B nanocrystals with NH2 functional groups accelerating oxytetracycline capture via hydrogen bonding[J]. Surfaces and Interfaces, 2020, 20: 100605. |
25 | Li F, Wang D K, Xing Q J, et al. Design and syntheses of MOF/COF hybrid materials via postsynthetic covalent modification: an efficient strategy to boost the visible-light-driven photocatalytic performance[J]. Applied Catalysis B: Environmental, 2019, 243: 621-628. |
26 | Du Y R, Xu B H, Pan J S, et al. Confinement of Brønsted acidic ionic liquids into covalent organic frameworks as a catalyst for dehydrative formation of isosorbide from sorbitol[J]. Green Chemistry, 2019, 21(17): 4792-4799. |
27 | Li Y Y, Jiang J, Fang Y, et al. TiO2 nanoparticles anchored onto the metal-organic framework NH2-MIL-88B(Fe) as an adsorptive photocatalyst with enhanced Fenton-like degradation of organic pollutants under visible light irradiation[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(12): 16186-16197. |
28 | Liu N, Huang W Y, Zhang X D, et al. Ultrathin graphene oxide encapsulated in uniform MIL-88A(Fe) for enhanced visible light-driven photodegradation of RhB[J]. Applied Catalysis B: Environmental, 2018, 221: 119-128. |
29 | Zhang F M, Sheng J L, Yang Z D, et al. Rational design of MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors[J]. Angewandte Chemie International Edition, 2018, 57(37): 12106-12110. |
30 | Shi L, Yang L Q, Zhou W, et al. Photoassisted construction of holey defective g-C3N4 photocatalysts for efficient visible-light-driven H2O2 production[J]. Small, 2018, 14(9): 1703142. |
31 | Shao L Y, Yu Z X, Li X H, et al. Carbon nanodots anchored onto the metal-organic framework NH2-MIL-88B(Fe) as a novel visible light-driven photocatalyst: photocatalytic performance and mechanism investigation[J]. Applied Surface Science, 2020, 505: 144616. |
32 | Lu G L, Huang X B, Li Y, et al. Covalently integrated core-shell MOF@COF hybrids as efficient visible-light-driven photocatalysts for selective oxidation of alcohols[J]. Journal of Energy Chemistry, 2020, 43: 8-15. |
33 | Deng R, Luo H, Huang D L, et al. Biochar-mediated Fenton-like reaction for the degradation of sulfamethazine: role of environmentally persistent free radicals[J]. Chemosphere, 2020, 255: 126975. |
34 | Cheng M, Liu Y, Huang D L, et al. Prussian blue analogue derived magnetic Cu-Fe oxide as a recyclable photo-Fenton catalyst for the efficient removal of sulfamethazine at near neutral pH values[J]. Chemical Engineering Journal, 2019, 362: 865-876. |
35 | Tang J T, Wang J L. Metal organic framework with coordinatively unsaturated sites as efficient Fenton-like catalyst for enhanced degradation of sulfamethazine[J]. Environmental Science & Technology, 2018, 52(9): 5367-5377. |
36 | Tang J T, Wang J L. MOF-derived three-dimensional flower-like FeCu@C composite as an efficient Fenton-like catalyst for sulfamethazine degradation[J]. Chemical Engineering Journal, 2019, 375: 122007. |
[1] | Lisen BI, Bin LIU, Hengxiang HU, Tao ZENG, Zhuorui LI, Jianfei SONG, Hanming WU. Molecular dynamics study on evaporation modes of nanodroplets at rough interfaces [J]. CIESC Journal, 2023, 74(S1): 172-178. |
[2] | Xiaoqing ZHOU, Chunyu LI, Guang YANG, Aifeng CAI, Jingyi WU. Icing kinetics and mechanism of droplet impinging on supercooled corrugated plates with different curvature [J]. CIESC Journal, 2023, 74(S1): 141-153. |
[3] | Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds [J]. CIESC Journal, 2023, 74(9): 3665-3680. |
[4] | Dian LIN, Guomei JIANG, Xiubin XU, Bo ZHAO, Dongmei LIU, Xu WU. Preparation and drag reduction effect of silicon-based liquid-like anti-crude-oil-adhesion coatings [J]. CIESC Journal, 2023, 74(8): 3438-3445. |
[5] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
[6] | Ben ZHANG, Songbai WANG, Ziya WEI, Tingting HAO, Xuehu MA, Rongfu WEN. Capillary liquid film condensation and heat transfer enhancement driven by superhydrophilic porous metal structure [J]. CIESC Journal, 2023, 74(7): 2824-2835. |
[7] | Chi YIN, Zhengguo ZHANG, Ziye LING, Xiaoming FANG. Combining paraffin@silica nanocapsules with carbon fiber to develop a phase change thermal interface material for efficient heat dissipation [J]. CIESC Journal, 2023, 74(4): 1795-1804. |
[8] | Weijiang CHENG, Heqi WANG, Xiang GAO, Na LI, Sainan MA. Research progress on film-forming electrolyte additives for Si-based lithium-ion batteries [J]. CIESC Journal, 2023, 74(2): 571-584. |
[9] | Yi LIAO, Yabin NIU, Yanqiu PAN, Lu YU. Modeling the effects of mixed surfactants on the behaviors and properties of the oil-water interface with molecular dynamics [J]. CIESC Journal, 2022, 73(9): 4003-4014. |
[10] | Wangxin GE, Yihua ZHU, Hongliang JIANG, Chunzhong LI. Research progress on electrolytes for carbon dioxide electroreduction [J]. CIESC Journal, 2022, 73(8): 3433-3447. |
[11] | Wen LI, Zhong LAN, Weili QIANG, Wenzhi REN, Bingang DU, Xuehu MA. Evolution characteristics of clusters in transitional region near subcooled wall during condensation process of steam [J]. CIESC Journal, 2022, 73(7): 2865-2873. |
[12] | Chuyue CAI, Xiaoming FANG, Zhengguo ZHANG, Ziye LING. Enhancing heat dissipation performance of paraffin/silicone rubber phase change thermal pad by introducing carbon nanotubes [J]. CIESC Journal, 2022, 73(7): 2874-2884. |
[13] | Shuyan WANG, Ruiyang ZHANG, Run LIU, Kai LIU, Ying ZHOU. Interfacial structure regulation of Mn(BO2)2/BNO to enhance catalytic ozone decomposition performance [J]. CIESC Journal, 2022, 73(7): 3193-3201. |
[14] | Xinxin ZENG, Huijuan BAI, Juan YU, Pei HUANG, Chao YANG, Junbo XU. Mesoscale structure and regulation of polyimide resin matrix composites for hypersonic aerospace [J]. CIESC Journal, 2022, 73(6): 2352-2369. |
[15] | Chunhui LI, Hui HE, Mingjian HE, Meng ZHANG, Yang GAO, Caishan JIAO. Extraction kinetics of Ce(Ⅳ) from nitric acid solutions using ionic liquid [J]. CIESC Journal, 2022, 73(4): 1606-1614. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||